量子力学での非線型何とかの扱いと自己共役性と原子核的なアレ

この記事は2分で読めます

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては中高数学駆け込み寺,
大学数学に関しては現代数学観光ツアーという無料の通信講座があります.
ご興味のある方はぜひお気軽にご登録ください!

元発言の人が鍵つきなのでこう引用が色々とアレだが, こんなやりとりをした. 問題ないと思われる範囲で引用する.
元は「量子力学でのオブザーバブルを非線型作用素で書くことがあるか」という話で次が続く.

@sazanka_kamelie どうなんでしょう. 観測可能な物理量だったらスペクトル分解できて欲しいので, 線型作用素であることは要請しそうですが…

「量子力学での非線型 Schrodinger とかの扱いはどうなの」という話が来てこうなる.

@sazanka_kamelie あまり詳しくないですが一次元系の BEC が非線形シュレーディンガー方程式で近似できるという話はちらっと聞いたことがあります. 

中略 

@sazanka_kamelie 良く知らないですが, 多分解きたい方程式が非線形シュレーディンガー方程式で近似できるみたいな話だと想像してます. ちなみにですが相転移 P にも聞いてみたらどうでしょう.

ここで話を振られたので知っていることを答えてみた. 詳しくないのでつらいところだが.

@wr_r @sazanka_kamelie 詳しい人に聞いた方がいいですが, GP http://en.wikipedia.org/wiki/Gross%E2%80%93Pitaevskii_equation のことなら, アレは物理量というより基底状態を求めるための近似式のはずなので違うのではないか説 

@wr_r @sazanka_kamelie 別件ですが, 原子核だと (近似として) 非エルミートの物理量 (ポテンシャル) を使うことがあるそうなのでhttp://nucl.phys.s.u-tokyo.ac.jp/yakou/gensan.pdf , あまり杓子定規な扱いはよくないのではないか説 

@sazanka_kamelie それはお役に立てて良かったです. 今日みたいにおもしろい話があればめた聞かせてください (^_^) @phasetr ご丁寧にお教えいただきありがとうございます. GP というのですね. 僕ももっと守備範囲を広げていきたいものです. 

@wr_r 私の守備範囲の狭さは危険水準なので涙を禁じ得ません
@phasetr たまにツイッターで物理 or 数学を教えて欲しいと話されてますよね. 僕も守備範囲狭いので涙を禁じ得ません.

本当に正確に理解できているのか不確かなのだが, 原子核で Schrodinger が Hermite (自己共役) にならない形のポテンシャルを使う, と聞いたときはびっくりした覚えがある. それ以来, 原子核の理論をちょっと見てみたいと思っているが手が出ない, という以前に何を読んだものかというレベルで止まっている.


中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては中高数学駆け込み寺,
大学数学に関しては現代数学観光ツアーという無料の通信講座があります.
ご興味のある方はぜひお気軽にご登録ください!

  • このエントリーをはてなブックマークに追加
  • LINEで送る
  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

このサイトについて

はじめまして。相転移Pです。数学・物理の情報を中心にアカデミックな話題を発信しています。このサイトを見て興味があればぜひご連絡ください。 mail: phasetr@gmail.com LINE: oxg2753d
  • このエントリーをはてなブックマークに追加
  • LINEで送る

現代数学観光ツアー

神秘的な自然現象など冒険心をくすぐる数学世界を堪能してみませんか?
現代数学観光ツアーと称して無料の通信講座形式であなたを数学の名所に案内していきます.
ご興味のある方はぜひこちらからご登録ください!

YouTube チャンネル登録

講義など動画を使った形式の方が良いコンテンツは動画にしています。ぜひチャンネル登録を!

メルマガ登録

メルマガ登録ページからご登録ください。 数学・物理の専門的な情報と大学受験向けのメルマガの 2 種類があります。

役に立つ・面白い記事があればクリックを!

記事の編集ページから「おすすめ記事」を複数選択してください。