Terence Tao に線型代数で殴り続けられる夢を見た

この記事は2分で読めます

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては中高数学駆け込み寺,
大学数学に関しては現代数学観光ツアーという無料の通信講座があります.
ご興味のある方はぜひお気軽にご登録ください!


線型代数トークで kyon_math さんのこの辺からの話が面白かったので記録しておく.

「理解する」のと「研究する」のはかなり違うと思う. (自分も含めて) 理解するだけの人なら世の中にはたくさんいるが, 数学が究極的に目指していることは, 難解で複雑に見えることを単純かつ簡明に, 誰でも理解できるレベルにすることにある.
難解かつ複雑なことでも, 技術が進み, 社会的な理解が進むと簡単になる (ものもある). 例えば複素数. 大昔は複素数そのものが難解で, しかも一流の数学者の研究対象であったが, いまや高校の教科書に載っているレベル. これは社会的な理解が進んだ例.
リー群やリー環だって, ここまで一般的になるとは思われていなかっただろう. リーマン多様体なんかもそうだ. いまや空気のごとき存在. ガロア理論は学部で習う.
しかし, 理解にはたくさんのレベルがある.
例えば, 学生時代に学んだ線形代数. その時は「それなりに」理解していたはずだが, その後, 研究者の卵→教師→中堅研究者と進むにしたがって, 見えている地平線はまったく異なってきた. そして, これからも異なって見え続けるだろう.
まぁ, 理解が進んで見えてる地平が異なってこないとすると, それはあまり深くないってことだし, そんなの一生かけて研究しようとは思わないよな. #線形代数の帝王になる
線形代数じゃなくって岩澤理論とか類体論とか書けばかっこ良かったなぁ. #誇大表示 とはいえ, 線形代数の帝王になるのでさえもかなり狭き門だが.
むかしハウ先生の研究室にお邪魔してた時, いまは亡きラングが闖入してきて「きみ, ロジャーは線形代数の帝王なんだよ, 知ってるかい? 」「もちろんよく知ってますよ」と答えておいた. #学生だと思われたんだと思う
線形代数がどれ位深いかというと, 最近のものではホーン予想. http://bit.ly/1aj4SlV http://bit.ly/1aApSpG
ホーン予想: エルミート行列の和 (C = A + B) を考えたとき, (A, B) の固有値から (C) の固有値の範囲が線形不等式で書けるという単純なもの. ワイルが問題提起, 1962 年に予想されて, 解けたのが 1998 年.
ホーン予想の解決は Klyachko と Knutson-Tao によって独立に得られた. #ホーン予想1
で, ジャグラーの Knutoson と紅顔の天才 (だった) Tao の解法はハニカムモデルと呼ばれ, リトルウッド・リチャードソン係数の計算などに幅広い応用を持つ画期的解法だった. http://bit.ly/1aApSpG #ホーン予想 2
ま, みんなよく知ってるはずのエルミート行列の固有値問題でさえこれほどの深みを持っていた. そして, その深さを見抜くには特殊の才能が必要である
よく知っているはずのなんでもない事実の裏側を, ほんの少し覗くととてつもない深淵が待ち受けている. それを見抜く目を持っているかどうか. 理解のレベルとはそういうものだ.

あとこの辺.

いやいや私のような若輩者には勤まりません. RT @Paul_Painleve: 線形代数雑誌の編集者はいかがでしょうか? NLAAhttp://onlinelibrary.wiley.com/journal/10.1002/ (ISSN) 1099-1506 LAA http://www.journals.elsevier.com/linear-algebra-and-its-applications/
@kyon_math 若輩って言っちゃあアカン立場でしょうに笑 線型代数の専門誌は数値解析やグラフ理論といった応用数学の話題が多いのですが, 表現論的にも面白いのではないでしょうか? 微積分のほうは微分方程式の中で普通に使われてて, 雑誌の形で切り分けられないのでしょうね.
@Paul_Painleve 線形代数たっていろいろありますからね. 0 と 1 のみの行列で各行各列にある 1 の和がある一定の値になるものの総数というと, 行列の問題ですが, 本質は組合せ論. それを組合せ論の手法でなく線形代数で解けるかというのが面白いと感じます.

とりあえず線型代数をなめている学生はこの辺で殴打していきたい.


中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては中高数学駆け込み寺,
大学数学に関しては現代数学観光ツアーという無料の通信講座があります.
ご興味のある方はぜひお気軽にご登録ください!

  • このエントリーをはてなブックマークに追加
  • LINEで送る
  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

このサイトについて

はじめまして。相転移Pです。数学・物理の情報を中心にアカデミックな話題を発信しています。このサイトを見て興味があればぜひご連絡ください。 mail: phasetr@gmail.com LINE: oxg2753d
  • このエントリーをはてなブックマークに追加
  • LINEで送る

YouTube チャンネル登録

講義など動画を使った形式の方が良いコンテンツは動画にしています。ぜひチャンネル登録を!

メルマガ登録

メルマガ登録ページからご登録ください。 数学・物理の専門的な情報と大学受験向けのメルマガの 2 種類があります。

役に立つ・面白い記事があればクリックを!

記事の編集ページから「おすすめ記事」を複数選択してください。