19 世紀の代数幾何の定理とか Urysohn の補題とか

この記事は1分で読めます

このサイトは学部では早稲田で物理を, 修士では東大で数学を専攻し, 今も非アカデミックの立場で数学や物理と向き合っている一市民の奮闘の記録です. 運営者情報および運営理念についてはこちらをご覧ください.

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては中高数学駆け込み寺,
大学数学に関しては現代数学観光ツアーという無料の通信講座があります.
ご興味のある方はぜひお気軽にご登録ください!


ytb_at_twt さんのツイートをメモしておきたい.

誰かが言ってたけど, ホントに謎なのは, 数学の定理は不死鳥のように蘇ることがあること. 19 世紀の計算で解いた代数幾何学の定理が, ヒルベルト時代に忘れられ, 計算機時代に復活したとか聞くと数学ってなんなのかわからなくなる.
@ytb_at_twt ありますね, 古い定理や手法などの復活. 数学に限らない気がします. アナログ電子回路でも, 昔に廃ってしまった回路方式が復活したのを見て驚いたことがあります.
@tadamago アナログ回路って職人芸的なイメージがあるんですが, そういう分野では復活とかがあるような気がします.
@ytb_at_twt Urysohn の万有距離空間を触っていた時は, 後のかっこいい存在証明よりも Urysohn 自身のごりごりとした構成法のほうが役に立ちました. おかげで, 仏語を読むはめになりましたが.
@kamo_hiroyasu ああ, それはすごく判ります. きたない証明の方が情報量は多いですよね. 「最大不動点が存在」とか言われて何が起こったか輪からにこととかよくありますね.

かもさんのコメントがかなり気になった. Urysohn の論文はどんなことをやっているのだろう.

そもそものやたべさんのコメントにある定理が何なのかも気になる.


中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては中高数学駆け込み寺,
大学数学に関しては現代数学観光ツアーという無料の通信講座があります.
ご興味のある方はぜひお気軽にご登録ください!

  • このエントリーをはてなブックマークに追加
  • LINEで送る
  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

このサイトについて

数学・物理の情報を中心にアカデミックな話題を発信しています。詳しいプロフィールはこちらから。通信講座を中心に数学や物理を独学しやすい環境づくりを目指して日々活動しています。
  • このエントリーをはてなブックマークに追加
  • LINEで送る

YouTube チャンネル登録

講義など動画を使った形式の方が良いコンテンツは動画にしています。ぜひチャンネル登録を!

メルマガ登録

メルマガ登録ページからご登録ください。 数学・物理の専門的な情報と大学受験向けのメルマガの 2 種類があります。

役に立つ・面白い記事があればクリックを!

記事の編集ページから「おすすめ記事」を複数選択してください。