松崎拓也, 岩根秀直, 穴井宏和, 相澤彰子, 新井紀子諸氏による論文『深い言語理解と数式処理の接合による入試数学問題解答システム』

この記事は1分で読めます

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては中高数学駆け込み寺,
大学数学に関しては現代数学観光ツアーという無料の通信講座があります.
ご興味のある方はぜひお気軽にご登録ください!

松崎拓也, 岩根秀直, 穴井宏和, 相澤彰子, 新井紀子の諸氏による『深い言語理解と数式処理の接合による入試数学問題解答システム』 という論文が出たとのこと. 冒頭部を引用してみよう.

あらゆる数学のオブジェクトは Zermelo-Fraenkel の公理的集合論 (ZF) の (保存拡大の) 項だと考えることだできるので, ここでいう「計算」とは ZF の項の書き換えだと見做せよう. では, その計算をどこえめるべきか. 即ち, 問題文の直訳である項を, それと同等であるような無数の項のうちから, どのようなものに書き換えれば問題が「解けた」ことになるのだろうか. それを考えるヒントは, 解答群の中に見いだすことができる. 大学入試を例にとると, 証明問題以外では, 解答に現れるのは, (y = 2ax – a2,(x < 0 to a = 3) wedge (x ≥ 0 to a = 5)), (a_1 + · · · + a_n > 0) のような限量記号をひとつも含まないような式である. しかも, その式は, 実閉体の理論に三角関数や指数関数などの超越関数をシンボリックにしか利用しないような拡張を行った実閉体の体系 (拡張 RCF) に弱いペアノ算術の体系を加えた体系 ((mathrm{RCF}^{+ }+mathrm{PA})) で表現されるようなものにほぼ限られる. また, 模範解答に現れる式も, 実は (mathrm{RCF}^{+ }+mathrm{PA}) で記述可能な式が圧倒的に多いことに気づく. となれば, 問題文を同等の (mathrm{RCF}^{+ }+mathrm{PA}) の式に変換し, その式から限量記号を消去することが, 大学入試の数学問題を「解く」ことだと考えてもよいだろう.

この先の細かい部分はほぼ何を言っているのか分からないが, 試み自体がとても面白い. こんなこともやっている人がいるのか. 楽しい.


中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては中高数学駆け込み寺,
大学数学に関しては現代数学観光ツアーという無料の通信講座があります.
ご興味のある方はぜひお気軽にご登録ください!

  • このエントリーをはてなブックマークに追加
  • LINEで送る
  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

このサイトについて

はじめまして。相転移Pです。数学・物理の情報を中心にアカデミックな話題を発信しています。このサイトを見て興味があればぜひご連絡ください。 mail: phasetr@gmail.com LINE: oxg2753d
  • このエントリーをはてなブックマークに追加
  • LINEで送る

現代数学観光ツアー

神秘的な自然現象など冒険心をくすぐる数学世界を堪能してみませんか?
現代数学観光ツアーと称して無料の通信講座形式であなたを数学の名所に案内していきます.
ご興味のある方はぜひこちらからご登録ください!

YouTube チャンネル登録

講義など動画を使った形式の方が良いコンテンツは動画にしています。ぜひチャンネル登録を!

メルマガ登録

メルマガ登録ページからご登録ください。 数学・物理の専門的な情報と大学受験向けのメルマガの 2 種類があります。

役に立つ・面白い記事があればクリックを!

記事の編集ページから「おすすめ記事」を複数選択してください。