量子力学の数学に関する文献など: あとセミナーもしよう

この記事は1分で読めます

このサイトは学部では早稲田で物理を, 修士では東大で数学を専攻し, 今も非アカデミックの立場で数学や物理と向き合っている一市民の奮闘の記録です. 運営者情報および運営理念についてはこちらをご覧ください.

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては中高数学駆け込み寺,
大学数学に関しては現代数学観光ツアーという無料の通信講座があります.
ご興味のある方はぜひお気軽にご登録ください!


また Ask.fm.
質問はこれ.

量子力学の数学的な基礎を勉強したいのですが,
どのような分野を勉強すれば良いのか教えてください.
ご面倒でなければ参考になる本についても教えていただきたいです.

色々なところで言っていたりするのだから
それ見てよ, という気もするが, 一応回答.

量子力学の数学的基礎も超大雑把に言って,
作用素論系と偏微分方程式系に別れるような感じがあります.

私がやっているのは作用素論・作用素環系ですが,
それについては例えばニコ動に置いてある http://phasetr.com/services/niconico/
量子力学・量子統計周りの話を眺めてみて下さい.

参考文献ですが, 作用素論系では
http://phasetr.com/services/references/ にある
新井朝雄先生の本がベストです.

微分方程式関係だと Lieb がリーダーです.
Lieb-Loss の Analysis が基本的な文献と言っていいでしょう.
量子力学というより量子多体系, 量子統計の色彩が強いですが,
The Stability of Matter in Quantum Mechanics もお勧めです.
ちなみに両方とも新井先生の本ほど簡単ではありません.
とくに Analysis は関数解析くらい知っている, と思って
読んでいると痛い目を見ます.

色々な不等式の最良定数評価がかなり早い段階から出てきて,
前から順番にきちんと読もうと思うと 3 章が
最良定数含め, とてもきついです.
面白い本ではあります.

あと, 作用素論との関係が強い (作用素論的性質の解析に使う) という
イメージがあるのですが, 確率論からのアプローチもあります.
これも新井先生の本をまず読むのがいいです.
その次は Simon の本あたりでしょうか.

場の理論に行くなら Betz-Lorinczi-Hiroshima を読まねばなりませんが,
これはかなりきついです.
確率弱者の私は読めません.

関東近郊の方なら適当にゼミやるのに誘って頂ければ,
話す方含め相談のります.

Twitter でもいいですが, メール phasetr@gmail.com にでも
適当にご連絡・ご相談頂ければ.

メルマガの方で時々触れることを考えているので,
ご興味ある向きは ここから 登録されたい.


中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては中高数学駆け込み寺,
大学数学に関しては現代数学観光ツアーという無料の通信講座があります.
ご興味のある方はぜひお気軽にご登録ください!

  • このエントリーをはてなブックマークに追加
  • LINEで送る
  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

このサイトについて

数学・物理の情報を中心にアカデミックな話題を発信しています。詳しいプロフィールはこちらから。通信講座を中心に数学や物理を独学しやすい環境づくりを目指して日々活動しています。
  • このエントリーをはてなブックマークに追加
  • LINEで送る

YouTube チャンネル登録

講義など動画を使った形式の方が良いコンテンツは動画にしています。ぜひチャンネル登録を!

メルマガ登録

メルマガ登録ページからご登録ください。 数学・物理の専門的な情報と大学受験向けのメルマガの 2 種類があります。

役に立つ・面白い記事があればクリックを!

記事の編集ページから「おすすめ記事」を複数選択してください。