Sangyoh_sus さんによる『ゲージ理論入門』の PDF を読んだので

この記事は2分で読めます

このサイトは学部では早稲田で物理を, 修士では東大で数学を専攻し, 今も非アカデミックの立場で数学や物理と向き合っている一市民の奮闘の記録です. 運営者情報および運営理念についてはこちらをご覧ください.

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!


せっかくなので読んでみた.
前半部分の多様体の基礎を非可換幾何の観点から説明していると思しき
Frohlich, Grandjean, Recknagel の
Supersymmetric Quantum Theory and (Non-Commutative) Differential Geometry
を前から読んで適当にまとめてセミナーしたいと思っているのだが
時間が取れていない悲しみがある.
http://arxiv.org/abs/hep-th/9612205

内容と関係ないが, 学部 2 年くらいでこの辺の勉強をしたとき,
何を言っているのか本当にわけがわからなかったので
多少は成長している感がある.

あとコメント.

P.8
このような連続的変換は, 量子力学において状態ベクトルという概念が見いだされ, 「状態 A と状態 B の中間的状態が連続的に存在する」という状況が現れたことで, 系の状態の変換は連続的にならざるを得なくなった.

量子系とか面倒なこといわなくても,
古典系で回転の表現とか, もっというなら時間・空間の
並進対称性の表現がばりばりに連続だし, そちらの方が
歴史的にも古いからそのレベルで紹介すれば十分だろうが,
一応, 素粒子・場の理論で使うということを意識しての説明なのだろう.
オーバーキル気味の説明という気はする.

ラグランジアン密度に M 上の場=ベクトル束の切断のみが入ることを許すという単純な仮定によって正当化できることは特筆に値すると筆者は考える.

この仮定, (数学的に) どのくらい強いのだろう.

これでは全ての力を統一する理論は無理なのか, と思われたところに, 「超対称性と呼ばれる対称性を考えることで P と内部対称性の群が混ざることができる」という定理が証明された (Haag-Lopuszanski-Sohnius の定理).

もしや, と思って調べてみたら案の定この Haag は AQFT の創始者の
Rudolf Haag だった.
Haag は本当に化け物だ.

関係ないが, これを検索しているときに芝浦工業大の守屋創さんの
C を使った超対称性の研究に関する PDF を発見した.
先日の RIMS での研究集会【量子場の数理とその周辺】で
少し守屋さんの名前が出たので, 勝手におお, と思った.
私の中で守屋さんというと Araki-Moriya の
Equilibrium Statistical Mechanics of Fermion Lattice Systems が
気になっている.
http://arxiv.org/abs/math-ph/0211016

これからがんがん使いたいのにあまりまともに読めていない.
精読したい.

それはそれとして, これを math-textbook にぶっこみたい.
https://github.com/phasetr/math-textbook


中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!

  • このエントリーをはてなブックマークに追加
  • LINEで送る

関連記事

  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

このサイトについて

数学・物理の情報を中心にアカデミックな話題を発信しています。詳しいプロフィールはこちらから。通信講座を中心に数学や物理を独学しやすい環境づくりを目指して日々活動しています。
  • このエントリーをはてなブックマークに追加
  • LINEで送る

YouTube チャンネル登録

講義など動画を使った形式の方が良いコンテンツは動画にしています。ぜひチャンネル登録を!

メルマガ登録

メルマガ登録ページからご登録ください。 数学・物理の専門的な情報と大学受験向けのメルマガの 2 種類があります。

役に立つ・面白い記事があればクリックを!

記事の編集ページから「おすすめ記事」を複数選択してください。