「わたしはついにモース理論がわかりました」:かの有名な Witten・Smale の Bott への言葉

この記事は2分で読めます

このサイトは学部では早稲田で物理を, 修士では東大で数学を専攻し, 今も非アカデミックの立場で数学や物理と向き合っている一市民の奮闘の記録です. 運営者情報および運営理念についてはこちらをご覧ください.

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!


前にも紹介した記憶があるが,
改めて記事を抜き出し, 引用しておく.
橋本義武さんの回想録みたいなやつ.
元記事はこれ:http://www.sci.osaka-cu.ac.jp/~hashimot/tateshina.htm.

まず Bott への Witten・Smale の有名な言葉, 「わたしはついにモース理論がわかりました」

4.印度土産

さて,ADHM とほぼ同時に物理学者の方でも BPST の一人 Schwartz が同様の結果に達していたらしい.Atiyah は物理学者の世界の競争の激しさにとまどいながらも,今自分がおかれている状況にかつてないスリルをおぼえていた.

ちょうどそのころ,そんな Atiyah たちをよそに,所は変わってインドのタタ研究所,木陰にデスクを出してもらってのんびり海をながめる毎日を送りながら,一人の数学者が sabbatical year を満喫していた.われらが Bott 先生である.愉快なインド滞在を終えた Bott はオクスフォードに盟友 Atiyah をたずねた. Bott はこのときのことをふりかえって,「Atiyah はすっかり舞い上がっていて “mathematical high” の状態だったんだ」と述懐している.どうやら知らぬ間に大きな事件がおこっていたらしい.ところが,興奮しながらインスタントンの説明をまくしたてる Atiyah の声が,インドで聞いたリーマン面上の正則ベクトル束のモジュライの謎を語るバラモンの数学者 Ramanan の静かな声に不思議と響きあうのであった.こうして Atiyah-Bott のリーマン面上の Yang-Mills ゲージ理論が生まれる.それは,Bott が若いときから追い求めてきたモース理論の新局面を切り開くものであった.

Bott は各地の物理学者たちの前で,Atiyah と彼とのゲージ理論について講演して回ったのだが,その反応は熱いものではなかった.しかしそんな中にあって一人の男が鷹のように Bott のことばを追ってきた.Witten である.彼は Bott の講演から,後に言う Witten のモース理論を着想する.後日,Bott は彼から一通の手紙を受けとる.そこには,「Bott 先生,わたしはついにモース理論がわかりました!」と記されていた.それは奇しくも,かつての弟子 Smale が直伝のモース理論にさらに磨きをかけついに高次元ポアンカレ予想を解決したときに Bott に告げたのと同じことばだったという.

【Atiyah の子どもたち】というのがなかなか

5.あれでもなくこれでもなく

Donaldson や Kirwan といった “Atiyah の子どもたち” は,Bott の来訪を毎回サンタを待つように楽しみにしていたという.Donaldson の論文 “An application of gauge theory to four dimensional topology” の題が Bott の若い頃の論文の題と似ているところに,そのあたりの雰囲気が表れているように思う.Donaldson のこの論文は,ADHM とも Atiyah-Bott とも違う道を切り開くものであった.すぐ近くで誕生した ADHM も Atiyah-Bott も深い理論であり,また当時できたばかりだからやることはたくさんあったはずである.事実 Donaldson はそれぞれに関連する仕事もしている.しかし彼は,それとは別に 4 次元トポロジーへの応用という思いもよらぬ方向へと一歩を踏み出した.彼の理論は,Rochlin の定理しかなかった 4 次元トポロジーの状況を打開しただけでなく,異種 4 次元ユークリッド空間という存在をわれわれに示してくれた.こんなものがあると知っただけでも数学を勉強した甲斐があったというものではない か.Witten はこう言っている,「Donaldson 理論は時空の幾何を理解する鍵である.」


中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!

  • このエントリーをはてなブックマークに追加
  • LINEで送る

関連記事

  • コメント (0)

  • トラックバックは利用できません。

  1. この記事へのコメントはありません。

このサイトについて

数学・物理の情報を中心にアカデミックな話題を発信しています。詳しいプロフィールはこちらから。通信講座を中心に数学や物理を独学しやすい環境づくりを目指して日々活動しています。
  • このエントリーをはてなブックマークに追加
  • LINEで送る

YouTube チャンネル登録

講義など動画を使った形式の方が良いコンテンツは動画にしています。ぜひチャンネル登録を!

メルマガ登録

メルマガ登録ページからご登録ください。 数学・物理の専門的な情報と大学受験向けのメルマガの 2 種類があります。

役に立つ・面白い記事があればクリックを!

記事の編集ページから「おすすめ記事」を複数選択してください。