スペクトル解析とレゾルベント解析 (?)

この記事は2分で読めます

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては中高数学駆け込み寺,
大学数学に関しては現代数学観光ツアーという無料の通信講座があります.
ご興味のある方はぜひお気軽にご登録ください!


役に立つことが言えた気がしないが,
とりあえずまとめておく.

吉田近似もそれなりに有界性ちゃんと使っていた記憶がある.
Hilbert, Banach 空間系の枠組みでやっていれば,
微分作用素はたいがい非有界なはずだ.
もちろん超関数の空間だと連続になってしまう.

あと有界領域での Laplacian (もう少し一般に楕円型でも言えたはずだが) は,
それ自身非有界でもレゾルベントが
有界どころかコンパクトにさえなるし,
幾何解析とか調和積分とかその辺でも大事なはず.


中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては中高数学駆け込み寺,
大学数学に関しては現代数学観光ツアーという無料の通信講座があります.
ご興味のある方はぜひお気軽にご登録ください!

  • このエントリーをはてなブックマークに追加
  • LINEで送る

関連記事

  • コメント (0)

  • トラックバックは利用できません。

  1. この記事へのコメントはありません。

このサイトについて

はじめまして。相転移Pです。数学・物理の情報を中心にアカデミックな話題を発信しています。このサイトを見て興味があればぜひご連絡ください。 mail: phasetr@gmail.com LINE: oxg2753d
  • このエントリーをはてなブックマークに追加
  • LINEで送る

YouTube チャンネル登録

講義など動画を使った形式の方が良いコンテンツは動画にしています。ぜひチャンネル登録を!

メルマガ登録

メルマガ登録ページからご登録ください。 数学・物理の専門的な情報と大学受験向けのメルマガの 2 種類があります。

役に立つ・面白い記事があればクリックを!

記事の編集ページから「おすすめ記事」を複数選択してください。