2021-05-01 幾何への準備をしよう/相転移プロダクション

コンテンツアーカイブの整備をはじめました

今週はひたすらにコンテンツアーカイブの整備を進めていました. 毎日の自分の勉強にも使うので語学系中心に進めていますが, 数学系もある程度整備できたのでいまの時点でも改めて共有しておきます.

これまでノートだけ取り続けて公開していなかった分も含めて公開していくので, 数ヶ月単位でしばらくアップが続きます. 量が多すぎてなかなか具体的に「これを公開した」と書きづらい状況が続きます. 当面は現代数学観光ツアーを復習しておいてもらえれば, と思います.

特に次の節は書いたまま公開していなかったところのはずです.

このイントロはいまの状況に合わせて書かれておらず, 少し変な記述が残っていると思いますが本筋には影響しません. これから具体的に進めようと思っている幾何方面へのコメントをつけているので, もしあなたが幾何にも興味があるなら参考になるはずです. 観光ツアー本体は関数解析系の解析学なので, そこに興味がある人はもちろん役に立つ内容です.

未受講または内容をよく覚えていないならぜひ眺めてみてください. PDF もダウンロードできるようにしてあります.

一つ注意

最近登録された方には申し訳ないと思いつつ, これから幾何の話をするとき, 現代数学観光ツアーの内容くらいの話は前提にしたいと思っています. このメルマガ自体も復習の内容を盛り込もうとは思っていますが, 積極的に受講してもらえると助かります.

ここでいう「前提」は次のくらいの意味です.

これだけでも全然違います.

もしあなたが詳細について知りたいなら, いったん現代数学探険隊を標準テキストとして推薦しておきます.

これを買わないと駄目ということは全くありません. ただ物理モチベーションの数学の話がこってり書いてあるコンテンツは見かけないので, 事実上これを勧めるしかないというか, ないから作った部分があります.

案内ページだけ読んでも勉強・参考になるように作っています. これも折に触れて眺めてみてください. 数学・物理の大きな姿の一端が見えるはずです.

幾何の話に向けて: 解析学から近付こう

解析学から考えてもいくつか入り方はあります. 当面は私の趣味と実益 (勉強) を兼ねて関数論からの話をします.

細かい話はたくさん本がありますし, まだ私も制圧しきれていない部分があります. 一変数関数論であっても独学しているとなかなか骨が折れるのです.

メルマガでは関数論の概要や関数論に出てくる数学的道具の紹介, もっと言えば言葉に慣れ親しむことにフォーカスして文章を書きます.

何も前提にしないのは厳しいので, 留数定理くらいまでの話を仮定しておきます.

実は以前, 留数定理を一つの結論に設定したセミナーを早稲田で学生相手にやったことがあり, そのときの原稿を次のページに公開しました.

当時いろいろな理由があって英語で原稿を作っていました. 日本語訳も同時に作っていたのですが, これは日本語訳を作らずに放置したままです. 現代数学探険隊でもっときちんとしたバージョンの日本語版を作ってしまったので, もう翻訳する理由がなくなってしまいました. ないよりはましなので一応公開して共有しておきます.

これも適当に眺めておいてもらえると助かります. プライベートもいろいろある中でいきなり大量の要求をしていて, 無茶は承知です.

コンテンツアーカイブにどんどん情報を上げている, という情報共有も兼ねてのことなので, 無理のない範囲で適当に楽しんでいってください.

最後に: 雑感

サイトを構成して思うのは, 階層構造が本当に扱いにくいです.

あまりフラットにするのもどうかと思い, 適当にディレクトリを切ってはいるものの, そもそも数学と物理にまたがるところが守備範囲なので, どこにどう入れるかが判断に悩みます.

それがあるから講座群紹介のところで 「アーカイブ上のコンテンツをある視点からまとめ, 勉強しやすくした通信講座」を入れています.

サイト検索もうまく動いていないので, Google検索に置き換え, その検索前提にしようかとも思っています. 私自身, 分類はもう諦めていて, ファイルや情報を適当に突っ込み, あとは grep や find などの検索ベースでやっています.

プログラミングも明確に守備範囲に入れたので, こういうライフハック的な話も紹介した方がいいような気もしています.

今回, メルマガ本体であまり数学の話ができませんでしたが, 次回からは関数論の話をはじめます. 楽しみにしていてください.

ではまたメールします.