自己参照
式を含むこともよくあるため, 記事本体はアーカイブサイトへのリンク先にまとめています.
メルマガのバックナンバーは次のページにまとめてあります. 興味があればどうぞ.
「読んだよ」だけでもいいのでぜひ感想をください. メルマガを書く励みになります. 最近感想を頂く機会が増えてきたので素直に嬉しいです.
メルマガへの返信でも構いませんし, 次のアンケートフォームへの回答でも構いません.
ではまたメールします.
いい加減きちんと勉強しなければと思ってAOJで基本的なアルゴリズムとデータ構造学習をしていたものの, AOJでF#が使えないのもあってうんざりしてきたためAtCoderに戻りました. そしてAtCoderは楽しいですね. 知らぬ間に少しずつアルゴリズム力も鍛えられているようで, AtCoder ProblemsのHardも前より取り組みやすくなっている気がします. 年始に本格再開したAtCoder Problemsもうまくいけば今年中に300問解き切れるかもしれません.
通信講座向けコンテンツ整備の一環としての熱力学ノート整備はやる気が出ないため, 既存のノート整理・復習と代数ノート整備を進めています. 先日Twitterで「ふつうの文章の体裁での証明は話の流れや構造が掴みにくい. 実際の本や論文ならともかく, 個人学習ノートなどなら箇条書きをうまく使って証明の構造を掴めるようにした方がいいのでは?」というツイートが流れてきました. 実は私もホモロジー代数ノートでは図式をTeXで書くのは面倒, しかし文章形式は読みづらいと思っていて箇条書き形式のノートにしていました. 試しに復習ついでのノート整理で証明をゴリゴリ箇条書きに変えています. 情報伝達に振り切った形式で好き嫌いは別れそうですが, 一文一文が簡潔で区切りも明確になって流れは掴みやすくなっている感覚はあります.
そもそも大人向け通信講座のコンテンツとして, 細切れの時間でも取り組みやすくするため小節をかなり細かく刻む方針にしています. 具体的にはAubinの幾何解析の本では注意や命題や証明自体を一つの節に切り分けて節番号が振られているのを参考に, 命題程度のレベルで小節をわけていました. いまはこれをさらに細かく, Aubinの本と同じく命題と注意と証明を小節にわける形式にしつつ, 証明を箇条書きベースに書き換えています. 細かな形式はまだ試行錯誤中ですが, 議論の流れを掴む目的でのノート作りを考えている人にはお勧めです.
先日宣伝した中平さんの本も出版されました.
まだパラパラと読みはじめたばかりで何も言えませんが, 量子力学の通信講座展開もあって読まないわけにもいきません.
この本では次のようなコメントがあります. (私の脳内翻訳です.)
線型代数の計算も大事だが必ずしも皆が皆慣れているわけではない. 計算ばかりでは事の本質が掴みにくいときもある. もちろん図式だけで全てが汲み尽くせるわけでもなく, ふつうの線型代数の計算力の意義・重要性は微塵も揺るがないが, いくつかの点で明確なご利益がある.
以前も紹介した気がしますが, 図式による議論は圏論的なストリング図とも関係があるらしく, 圏論への親しみも増すだろうと思いつつのんびり眺めている最中です. 図式によるTeXノート作りも大事なので, TeXの書き方に関して情報が出ていなければ何か参考情報をシェアしてもらえるよう働きかける予定です.
Twitterで鍵アカウントの博士学生に対する応答をシェアしておきます. 何度となく言っている内容ではありますが, タイミング次第で同じ内容でも入ってくる情報量が変わる場合もあれば, 興味関心が合致する場合もあります.
作用素環の主な二つのクラスとして、C^環とvon Neumann環がある 可換C^環に対してはGelfand-Naimark双対性によってコンパクトHausdorff空間と反変圏同値があるが、可換von Neumann環に対してもcompact strictly localizable enhanced measurable spacesとの反変圏同値が成り立つらしい 他にもmeasurable locales、hyperstonean locales、hyperstonean spacesの圏としての表示もある https://arxiv.org/abs/2005.05284 この対応があるという意味で、一般のC^*環の理論は非可換位相空間論で、一般のvon Neumann環の理論は非可換測度論と見放されるらしい
圏論・幾何方面ならC^*というかもっと一般に非可換幾何ですが、ゴリゴリの解析で非可換積分論だと少し古いもののhttps://arxiv.org/abs/1208.5197のような話があります。非可換確率論もあり、最近圏の本をいろいろ書いている西郷甲矢人さんが非可換確率論の人です。Twitterにもいます。
Observing quasiparticles through the entanglement lens https://journals.aps.org/prb/abstract/10.1103/PhysRevB.106.L161104 準粒子の情報がエンタングルメントスペクトラムや相互情報量に含まれるよ理論。物性屋さんも情報理論を本格的にやらんといけん時代かな?
いままで量子情報に興味が持ちきれない状態だったところ, こんな話まで出てきたとなれば物性から情報の勉強ができるパスが開かれたとも言えます. いよいよ私にとって情報理論を勉強しやすくなる環境が整ってきたのでしょう. とても楽しみです.
小中高で触れる数学は人間同士の間の競争という文脈と結構固く結びついている印象がある。大学以降も純粋数学を続けるなら、まず敵は人ではなく数学であり、対人戦ゲームではなく協力プレイのゲームであるという意識を持つところから始める必要がありそう。 まあ大学に入ってからも大学院に上がる際に院試があって、そこではどうしても対人の数学をやらなければいけないのだけどね。 僕は大学入試で2敗、修士の院試でも1敗してるので、もう対人の数学はあまりやりたくないですね…笑
書いといてなんだけど,小学校はそうでもなかったかもしれない.あと僕がこういう風に思ってるのは,高校受験とか大学受験みたいな受験戦争に身を投じたときに歪んだ価値観を植え付けられたからなのかもしれない…
これに対するくるるさんのコメント.
なんでもとあるアメリカの大学教授が、黒人学生が微積分でつまづくのをなんとかしようと観察・調査をした結果、白人やアジア系学生はグループで勉強し簡単なミスや勘違いを素早く修正できるのに対し、黒人学生は一人で勉強し細かい点で時間をかけすぎる傾向にあることを発見したそうで(続く) 小中高で触れる数学は人間同士の間の競争という文脈と結構固く結びついている印象がある。大学以降も純粋数学を続けるなら、まず敵は人ではなく数学であり、対人戦ゲームではなく協力プレイのゲームであるという意識を持つところから始める必要がありそう。 黒人学生もグループで勉強するように誘導したところ劇的に成績が改善し今ではむしろ黒人学生の方が平均値が高くなるようになったそうで。「負けたくない」「バカにされたくない」という意識は小中高でも十分ネガティブに働くのではないかと思う。 とはいえ、コミュ障の私にはどうも納得いかない面があるわけなのですが。まあとりあえずそういう研究・実践の報告があるということで。ちなみに本の文脈では、「黒人は数学ができない」というステレオタイプが最初に挙げた傾向の違いに影響しているという話になります。
何にせよ一人で勉強を続けられること自体が異常よりの行動力の持ち主です. 役に立つわけでもない話ならなおさらです. ここが私の領域だとも思うので通信講座は続けなければと思います.
プログラミングの話です. 細かなツールチェーンの話はいまだに山程あれど, 基本的にはReact一強にはなったため前よりは勉強しやすく, 取り組みやすくなっている印象があります. ツールチェーンも日々新しいのが出ているとはいえ, いろいろなモノをごちゃごちゃと組み合わせるのではなく, 簡素化の方向に向かっているのも有り難いです. もちろん開発者自身がもう耐えられないのでしょうし, Denoは明確にそこに舵を切っているようです.
それはそれとして書きたいのは高速化とRustの利用です. Rustは少なくとも他のメジャーな言語には搭載されているメカニズムがあり, 単純にそれを使った実装に興味があります. 前に微分方程式のプログラミングで少し使ったことはあり, 慣れないため面倒なことこの上なかったものの, バグを生みにくいプログラムを作るための面倒さ, もっと言えば既存の言語の悪癖の修正を促す言語という点がかなり気になっています.
そしてもう一つの高速化に対する明確な強い欲求が気になっています. アルゴリズムとデータ構造の話はそれ自体面白くなってきましたが, 高速化・効率化に関わる明確なご利益がある議論でもあります. そしてRust自体の速度だけではなくアルゴリズム上の工夫もたくさんあるようで, Rust+アルゴリズムはもっと面白い世界になっていくのではないかと見ています.
AOJを見ている限りではRustの競プロコードはそれなりにボリュームがあり, HaskellやF#ほどの簡潔さはなさそうです. 長いコードは読むのに体力を使い, Haskellでよく思うように短すぎても読みにくく, F#の程々さが気に入ってもいるためしばらくRustはお預けですが, 何かしらのタイミングでもっとしっかり勉強したいところです.
先日『チ。』が微妙に燃えた影響でいくつか関連コメントが出ていました.
『チ。』で近世の天文学に関心をもった方にはこの本が超絶オススメ.若い読者向けということで「話し言葉」で書かれてあるのですが内容は初学者に配慮しつつも本格的.科学史という学問がどういった手法で過去の天才の思想と対峙しているのか,第一人者が手の内を明かしてくれている点にも大注目で コペルニクスが地球を動かした理由をどう考えればよいのか?高橋憲一先生の立場を結論から言います.
一般的にいって何らかの主義ないし信念をもちさえしたら「太陽の静止」と「地球の運動」の観念が得られると考えることこそ天文学研究の現場を素通りした想定だと言わなければならないであろう.
ここでの主義とは,コペルニクスの場合は新プラトン主義(とヘルメス主義)による「太陽中心」へ影響を想定しています.これをきっぱりと否定するのですが,その根拠の示し方に私は著者の史料への誠実さを感じるわけです.新書には収めきれなかった議論を少しご紹介します. まずコペルニクスは「ヘルメス・トリスメギストス」を「トリメギストス」と誤記しています.私であれば誤記は毎日のことですが,コペルニクスが「主義者」であれば,この誤記を見逃すわけがない.Twitterであれば,直ぐに引用RTで「間違ってますヨ」とマウントを取られるところです😂 また新プラトン主義者であるフィチーノは「太陽=神=宇宙の中心」というようなことを『太陽論』(『原典 ルネサンス自然学 上』に邦訳あり)で語るのですが,それは⬇のようなイメージ(月・水・金・「太陽」・火・木・土)であり太陽が宇宙の中心(最低部)でありません. 太陽のある「そこ」を「宇宙の中心」と見なしたのがフィチーノの斬新なのです. なお「地球中心から太陽中心への転換」はこの新書のクライマックスの一つではありますが,科学の歴史というものをどう検討すればよいのか?ということ考える実例として秀逸な本ですので,広く読まれて欲しい本です. 訂正:フィチーノ『太陽論』は「下巻」⬇です.なお訳者は,フィチーノの「太陽中心」(というより太陽中央というべきと思いますが)はコペルニクスに影響があったのでは??という期待を持っているようです. https://unp.or.jp/ISBN/ISBN978-4-8158-0881-5.html
教官としてのアムロ、「どうすれば自分のような反射速度や判断ができるか」を真面目に考えると思うので、「反応出来なくても対応できるようにしよう」って教え方をすると思うんですよ 後ろから攻撃が来る場面を想定するなら、「反応しろ!」ではなく「こういう時は後ろからの攻撃も考えておく」とか カミーユに「後ろにも目をつけるんだ!」は「お前なら俺と同じく感覚を使えるんだからやれ!」なので、部下や生徒とかにはかなり基本に忠実になりながらも自分の経験を踏まえた的確な指導が飛んでくると思いますね ファンネルとかなら「オールレンジ攻撃はいかに的を絞らせないかだ、回避に専念するのではなくダミーを展開しつつ敵機への牽制をやめてはいけない」とか、「接近戦であればパイロットの気を反らしやすい、複数機でのダミー撹乱をしつつ一撃離脱を繰り返すんだ」とか、かなり具体的かな、と
この「反応出来なくても対応できるようにしよう」的な話がすごい好きで, また今後の教育関係の動きでも大事だと思うので自分用の備忘録も込めてシェアします.
地理情報サイト「Geographia」を公開します。 地理の教養記事、受験に役立つノウハウや各種記事のピックアップ、地理関係書籍の情報を共有していきます。 「誰もが平等に学ぶ機会を」 これをモットーにコンテンツを充実させていきます。 応援いただければ幸いです。 https://itgeographia.com
まだ見切れていないものの, 地理は理系向けの人文系の切り口としてかなりよいという感覚があります. 今後きちんと勉強したいので自分用備忘録も兼ねてシェアします.
Previous: 2022-10-15 Next: 2022-11-06 back to top