2022-11-06

数学・物理 箇条書きノートのすすめ/相転移プロダクション

今回のテーマ

式を含むこともよくあるため, 記事本体はアーカイブサイトへのリンク先にまとめています.

メルマガのバックナンバーは次のページにまとめてあります. 興味があればどうぞ.

感想をください

「読んだよ」だけでもいいのでぜひ感想をください. メルマガを書く励みになります. 最近感想を頂く機会が増えてきたので素直に嬉しいです.

メルマガへの返信でも構いませんし, 次のアンケートフォームへの回答でも構いません.

ではまたメールします.

近況報告

最近メルマガ書くのもサボり倒しつつあります. 本職の方も今月で区切りがついて来月からまた新しいほぼ未経験の内容に関するプロジェクトがはじまるため, きりきり舞い状態です.

ここ最近は来年以降に向けた幾何コンテンツのリリースも見越して, 幾何ノートを集中的に整備しつつ復習しています. 全然書けていないと思っていた多様体論のノートが思ったよりも書けていたため, 思ったよりも速くリリースできるかもしれません.

ここ1-2週間, そしてしばらくは幾何というより代数の整備が中心です. ホモロジー代数はもちろんのこと, それを駆使する関数論が視野に入っているからです. 関数論には解析学の側面もあれば, 代数的場の量子論などでも楔の刃の定理など限定的とはいえ関連する議論があります. もう一つやはり学部四年-修士一年程度の内容くらいはきちんと勉強してみたい代数解析でもホモロジー代数を駆使するため, 私が守備範囲に入れたい広い意味での解析学にとって重要だからです.

毎日少しずつノートをためてきて, 途方もなく長い道のりでうんざりすることも多かったものの, リリースも考えてノートを整備しはじめたところ, 自分が勉強してみたいと思っていた学部四年程度の幾何への道が少しずつ整備されてきたのが具体的に感じられてとてもいい気分です.

箇条書きノートのすすめ

先日メルマガタイトル自体を「証明の構造がわかる数学ノートを作りたい」にした程度に, ノート整備のついでに証明の箇条書き化を進めています. そして単純にできるわりには非常に効果的でした.

現状ではいったんほぼ何も考えずにまずは箇条書きベースで書き換えています. これで次のような形式が強制されます.

よくテクニカルライティングなどの文脈で「1センテンス1トピックにしろ」と言われます. 知ってはいたものの改めてその威力を実感しました. もともと通信講座用に作りはじめたノートで, 細切れの時間でも勉強しやすいようにと節もかなり細かく切っていました. 節・小節の単位でタイトルがつけられるため, あとでトピックを探す上でも便利で気に入っていたのがさらに徹底的になりました.

「情報を出している」という感じが強くなっていて, 文章の色気みたいなものまでほしい人には向かないのかもしれませんが, 少なくとも私には読みやすくなりました.

他にも箇条書きでまとめているため, 1トピックの区切りが明確です. 改めて眺めたときに「何だこれは」と詰まる部分もはっきりしやすくなりました. 箇条書きだと不明点も一段下げて「次のように考えればよい」といった補足が入れやすくなり, 追記・修正もしやすくなりました. あとで見れば「もはや自明」と思うような部分も, 箇条書きで一段下げて補足的な内容と明示させれば読み飛ばしやすくなります. やっているうちに気付いた点も取り込んでノートを少しずつ進化させる予定です.

代数学習・復習で得た実感

いま代数, 特に群と環の学部2-3年程度の基礎の基礎程度の内容のノート作りを終え, 体論・多項式論・ガロア理論の学習をはじめています. 実際には作用素環の部分因子環論で必要そうだから, と当時物理学科の学部四年のときに数学科の講義にもぐって一度は勉強していた内容です.

当たり前ですが全く身についていません. 久し振りに勉強して当時もよくわからなかった分離拡大などは, 改めて本を読んだら「標数0の体では全ての代数拡大は分離的」と書いてあって, いまだに慣れていない正標数の体でしか本質的な意味を持たない議論がわかるはずがありません. そもそもいまだに体論の理解はこの程度です. 学部一年から集合・位相をやっていて, 関数解析方面の基礎体力は多少ついていたにせよ, 非専門で適当に勉強した内容の理解度などこの程度だと改めて実感しました.

通信講座なりコンテンツ制作なりで, 必ずしも面白くない復習系のコンテンツをどう作っていくべきかなど, 改めて考えている中で注意しなければいけないポイントです.

非可逆行列の可逆化

わかれば一瞬かつ一言で直観的にも明らかである一方, 慣れていないときちんと証明がつけられない事案を観測しました. 参考になる方もいるでしょうからメルマガにも転載しておきます.

正方行列に怖い思いをさせてガタガタ震えさせることで、固有ベクトルがズレて可逆になる(?) 直感的には任意の非可逆行列 A と任意の ε > 0 について、可逆行列 B が存在して、すべての単位ベクトル v について |(A-B)v| < ε に出来ると思うんですけど、ほんとうでしょうか 線形代数力が無さすぎてわかりません

直観的には少し要素をずらせば行列式を非ゼロにできて可逆化します。特に非可逆な行列は基本変形でブロック対角型にできて「右下」が空くため、そこに成分がεの対角行列Dを埋めれば可逆化します。ブロック的な和としてA+Dを取れば大体Bが得られます。

ジョルダン標準系の0ブロックを適当に小さい数で埋める、確かに

相手がどこまで線型代数の諸概念を知っているかわからなかったため, 「このくらいは通じるだろう」という範囲で説明しました. 直観的に「それはそう」という話をきちんと詰めて話したところ, 相手からさらにそれを表す概念を使って一言でまとめる形で返ってきました. このやり取りだけでも線型代数の基本的な部分からある程度深い部分まで網羅されている上, 面倒な議論を一言で返せる概念が整備されている点にも気付きます.

先日Twitterで「数学まなびはじめ」の新井仁之さんの記事にあった, 「簡単な場合の証明を, 簡単な場合の特殊事情を使わず極限まで難しく書け. それが難しい場合の一般論を構築する上でのヒントになる」といった話をしました. 知識がある程度ある前提で復習するときは, 進んだ知識で簡単な議論を一言で表す訓練をしてみるといい勉強になります.

これの極端な場合が「大定理から系で示す」議論です. 有名どころはアティヤ・シンガーの指数定理です. 三次元空間内の曲面に対するガウス-ボネの定理は一般次元に持ち上げられる一方で, リーマン-ロッホの定理への一般化もあります. さらに一般的な議論がアティヤ-シンガーの指数定理で, 指数定理の系としてガウス-ボネの定理を証明する牛刀をもって鶏を割く話があります. そのままだと「すごいことはわかるが, いまひとつ心に落ちて来ない」ような場合に, 大定理の影響範囲が具体的に見えるする上で一つ大事なポイントになってきます. 進んだ議論を理解するためにこそ牛刀として使い倒すのは一手です.

数値計算とソボレフ空間

物理の人に必ずしも通じていないようなのですが, 数学, 特にソボレフ空間論は物理でもフォークロアになっている部分があるのを明示的にしたやり取りをシェアしておきます.

関数解析や数学的な微分方程式論が数値解析の具体的な問題に直結している様子が見えます. 数値解析に興味がある人がどれだけいるのかよくわかっていないのですが, 私もいまプログラミングとの兼ね合いで改めていろいろ考えている部分なので, それとも合わせて注意している点です.

学習物理界隈へのコミットをはじめたい

先日, 科研費で学習物理のプロジェクトをやっている富谷さんに, 「物理界隈向けの情報関係, 特にプログラミングまわりの具体的な教育面で何か手伝えることはないか」とTwitterで打診してみました. 先日も紹介した永井さんの数値計算本など, このあたりでいろいろ遊んでみたいことはあるもののなかなか踏み込むのは大変です. いっそコミュニティに入ってその中でいろいろやろうと思い, 具体的な貢献をしますよベースで話を持ちかけてみました.

以前からGitの使い方といったレベルであっても, 物理の数値計算コミュニティにはうまく浸透していないという話がTwitterであがっていました. 少なくともこういうところなら協力できる要素が必ずあるので, とにかく何か小さな1アクションを取ろうと思います.

やはり一人だと限界がありますし, 先日知人から「あなたは具体的な技術や知見を深めて突破口を作るよりも, 新たな人との出会いで道ができていくタイプだよ」と言われました. 同じことばかりしていてもどうにもならない感じもあったため, 意図的にこれまでとは違う動きをして, 人を巻き込み, 巻き込まれるべく動いていこうと思っています.