自己参照
式を含むこともよくあるため, 記事本体はアーカイブサイトへのリンク先にまとめています.
メルマガのバックナンバーは次のページにまとめてあります. 興味があればどうぞ.
「読んだよ」だけでもいいのでぜひ感想をください. メルマガを書く励みになります. 最近感想を頂く機会が増えてきたので素直に嬉しいです.
メルマガへの返信でも構いませんし, 次のアンケートフォームへの回答でも構いません.
ではまたメールします.
体調自体は問題ないものの, 新型コロナ感染による生活リズム崩壊の余波は続いています. ここ数日会社仕事用の勉強で慌てているのもあるのか, 数学をやる気が出ません. そこで今年中にとにかく一周終わらせようと思っていたAtCoder Problems300題を進めていて, 今日一応終わりました. ハードはほぼ自力で解けていません. 来年は実際にコンテストでAtCoderのABCのC/D程度まで解き切るのを目標にしようと思っています.
あとこれは読者のあなたにもお勧めしたい話として, いわゆるアウトプット系の学習がやはり大事です. AtCoder Problems300題については来年以降に向けて解説を作りはじめました. やはり解説を書くと曖昧な箇所をいい加減なままにしていてはいけない圧力が加わります. もちろん一題あたりの時間はかかりますが, その分明らかに一題一題への踏み込みと理解が上がるのを実感します.
森の未知さんがまたいいことを言っているため紹介します.
和田秀樹の暗記数学本には「思考力(しこうりょく)よりも試行力(しこうりょく)」的なことが書いてあったように記憶しているが、あれは数学学習・教育における不変の真理だと思う。 例えば、「ある実数xが存在して、任意の負の数yについて、x+y<0」という主張の真偽を判定させるとする。 すると、様々なxについて「任意の負の数yについて、x+y<0」を判定するわけだが、xが0以下なら良いと気付くまで試行できるかがこの真偽判定できるかの分岐点となる。 「数学」とか「数理」の付く学科で習うような高等数学での躓きは、このような施行ができないことによるものが多く、巷で思われているような抽象的な思考能力は大して重要でないのが実感。 で、試行力を支えるのは処理能力で、一回一回の試行を素早く正確にできるかが本当に大事。 大学数学で苦労するタイプの学生に上の問題を指導すると、具体的なx(例えばx=1)について「任意の負の数yについて、x+y<0」が正しいか判定するのに異様に時間がかかることに気付く。 もちろん、そんな処理能力ではxが0以下なら良いと気付くまで試行回数を稼げずに途中で匙を投げることになる。 試行回数を稼ぐための粘り強さも数学学習においては重要であるが、教育者の観点では処理能力の方が後天的に伸ばしやすいので、処理能力を意識的に鍛えさせることは重要となる。
ちょうど今日も競プロの解説を書いていて, よくわからなかったアルゴリズムに対して解説を書いていて, それを理解するために具体例を作っていたりしました. この構成力は数学でも非常に重要です.
処理能力で試行スピードと正確さを上げる話も, TwitterのJuliaコミュニティで数式処理・記号処理の話が出ていて, 自分の手計算が信じられないからSymbolic.jl
をうまく使いたいという話をしている人がいました. 以前書いたように, 私もリー群学習時, 行列の対数計算(予想)でsympy
を使ってゴリゴリ計算していて何て便利なのかと感銘を受けたのを思い出します. こうした点でも数学学習にプログラミングをうまく活用して試行力・スピード・正確性の共存を目指す取り組みは引き続き来年以降のテーマです.
現代数学探険隊の位相空間論と実数論を整理していて, ノート整理方針が固まりつつあります. 以前の記述もブラッシュアップしつつ全体に手をつけています.
いまは改めて先頭の集合論から進めています. 「自分がこんなのを知りたかった」と思った記述を散りばめているため, 読んでいてとにかく楽しいです. いま進めている競プロ解説でもお気に入りのF#布教の側面があり, いいと思ったものはもっときちんと勧めないといけない, お蔵入りさせるのは損失だと改めて思っています. 現代数学探険隊ももっと広めるために来年は久しぶりに広告なども使おうかと考えています. 通信講座・勉強会にももっと人を増やしたいのもあります.
私が参加している語学のコミュニティは数ヶ月ごとに新しい人が入ってくるのもあり, 各国の言語に関して数ヶ月ごとに同じ基本的な内容を勉強しています. そしてそこまでゴリゴリに勉強・暗記をしているわけではないため, 毎度の復習がルーティンになっているのがかかなり助かっています. 必ずしも専門でもない基本的な内容を定期的にゆるく復習できる機会を作る重要性を実感しているため, 通信講座・勉強会でもこの辺のメリットや楽しさをどう打ち出すかが鍵で, これも来年の課題です.
ちなみに整理していて実数論や位相空間論で次のようなネタが出てきています.
確率論ノートは多少埋めたものの, ポーランド空間がゴリゴリ出てくるようなところまでは書けていません. 不動点定理もよく使われる微分方程式系統の議論はまだまだ道半ばです. $p$進数・$p$進解析にいたっては全くノータッチです. 超距離不等式由来の$p$進関数解析の変な性質は恐ろしく扱いづらいものの, いままでに見たことがない位相空間論・距離空間論としても楽しみで, 改めて勉強意欲がわいてきています. 早くノート整理して, 幾何関係のノート作りも一段落させて解析学がやりたいです.
単純なメモです.
[James 1951]: There is a non-reflexive Banach space which is isometrically isomorphic to its dual.
ヒルベルト空間ならともかく, バナッハ空間は変な空間で双対と等距離同型にするのも一苦労で, 非可分だと本当に魔界です. その魔界にこんなよい空間があるというか, 魔界だからこそこんな凄まじい現象が起きているというか, どちらで理解すればいいかよくわかっていません. ただ, なかなか強烈な例です.
文献探して証明を収録しておきたいと思いつつ探索できていません. それも込めて備忘録としての記録です.
私の数学コンテンツには「証明手法を軸にした議論の展開」といった軸の補足説明もたくさんあり、例えば適当な条件を満たす位相や加法族の構成、ツォルンの補題を適用するハーンバナッハの定理や極大イデアルの存在証明など私が知る範囲の数学を縦横断した解説があるが、もっとそういうのが欲しい。
そもそもとしてボホナーの消滅定理やらdiagram chasingやら定理よりもむしろ証明手法の方が重要な議論もあるはずで、そういう縦横断系の話ももっと知りたい。
最近の現代数学探険隊ノート整理で集合論や位相空間論用の注意やコラム的に散りばめた記述を見ていると, いい話, そして最近あまり明示的に紹介していない, 忘れていた大事な話がたくさん書いてあります.
当時は一所懸命書いていてその当時の全力ではありましたが, とにかく文章が冗長でイライラしてくるのも事実です. これ含めて現在大改訂中です.
超準解析ノート作りが半端なままなのも思い出しました.
そういえば年明けすぐくらいから, 通信講座第三弾として「量子力学で学ぶ線型代数第二段」の通信講座の募集をはじめようと思っていたところ, 生活リズムの崩壊で何もできていません. いま二月開始を目処に考えているため, 興味がある人は三ヶ月分の勉強時間をおさえておいてください.
それはそれとして, 次にやろうと思っている熱力学とそれ向けノート整理で考えている話です. 熱力学は何となく身近な温度パラメータと環境がある系の議論からはじめるスタイルが多いように思います. しかし古典力学でも量子力学でも電磁気学でも, まずは理想的・非現実的な孤立系の議論をしてから, 現実的な系を考える非直観的なスタイルで進めるのがふつうです.
力学でいえばいったん摩擦がない系を考え, それから摂動的に摩擦を入れているとも思えます. 量子力学だとわかっているところからの摂動の視点は特に重要でしょう. 電磁気学でも電磁場だけを考えるケースと, 外場中の荷電粒子の運動を考えるケースのあと, 荷電粒子自身が作る場を考えるケースに進みます. 量子力学でもまずは水素原子の孤立系を考えます. 水素原子の励起状態は固有状態でいわゆる安定な状態です. しかしレーザーを考えればわかるように励起状態は光の形でエネルギーを吐き出して基底状態に落ちるはずです. ここで外場として古典的な電磁場を入れるとゼーマン効果とシュタルク効果にしかならず, 基底状態に落ち込む議論にはなりません. もちろんエネルギーを吐き出す対象として具体的に理論に自由度を追加する必要があり, それがいわゆるテンソル積による量子電磁場用の空間の導入です.
熱力学でも同じように孤立系を考えてから環境との相互作用や温度を考えるのが筋ではないか, そうするといまのノートの順番だとよろしくない, という状態です. 有名どころの教科書で言えば, 形式的には清水流か田崎流かという感じ. 熱力学の定式化の自分なりの整理を進めているため, 熱力学の講座はまだまだ時間がかかりそうです.
こういう内容の通信講座兼勉強会をやろうと思うと, そもそも一定以上の物理の素養がないと意義さえ感じてもらえないため, そこの種蒔きももっと真剣にやらないといけません. 量子情報でのクラウスの定理などもう少し分野横断の話をしようと思ったのですが, 今回は力尽きました. 改めて物理ネタももっと取り上げたいですね.
単純な情報共有です.
60 冊もの素粒子論物理&場の理論の本がSCOAP3 でただで見れるように
CERN's open access SCOAP3 initiative has released 60 particle physics and QFT books free for download here: https://scoap3.org/scoap3-books/
格子QCDシミュレーションの創始者のM. Creutzによる格子QCDの教科書がオープンアクセスになったそうです https://www.cambridge.org/core/books/quarks-gluons-and-lattices/2D0B198BB10DB7ACF56252909590DD6C?fbclid=IwAR3Q0DwJf8I79iPPLRnUVShXOeztqscAQeXE8xZxvIdB8EeM9P_FgIi7HbA
献血ができなくなるからという理由で、体には入れ墨を一切入れておらず[357]、かつて受けた「動機が不純。単に自らの名誉と影響力を拡大したいだけ。言ってしまえば、ショーにすぎない」という批判に対しては、「もし、他人を助けることがショーだと言うなら、僕は永遠にこのショーを止めるつもりはない」と語っている[358]。
本日から、国立国会図書館のデジタルコレクションが大幅バージョンアップされています。全文検索可能な資料が5万点⇨247万点に拡充され、また類似画像の検索機能が付加されました。 https://ndl.go.jp/jp/news/fy2022/__icsFiles/afieldfile/2022/12/02/pr221202_01.pdf
それでは一階言語の文になっていません。一階言語では量化子の可変個の入れ子が書けないからです。ではどうするかは、リプライで。 https://marshmallow-qa.com/messages/9223c77e-8c18-4dfb-847d-e3504e5f62a5?utm_medium=twitter&utm_source=answer
まず、自然数のリストの自然数によるコードを何か採用し、必要なだけのリスト処理関数の定義をPA言語で書きます。次に、それらを使ってリストの要素の積を返す単項関数prodを作ります。 それとともに、二つのリストがバッグとして等しいことを表す二項述語bageqの定義とリストの要素が全て素数であることを表す単項述語allprimeの定義を書きます。 以上の準備の下で、
∀x∀y(allprime(x)∧allprime(y)∧prod(x)=prod(y)→bageq(x,y) です。 あ、括弧があっていない。 ∀x∀y(allprime(x)∧allprime(y)∧prod(x)=prod(y)→bageq(x,y)) です。 なお、リスト処理の部分はさまざまな変種があり得ますので、便利なのを採用すれば良いです。例えば、nilとconsとcarとcdrからLisp風に組み立てていっても良いですし、ゲーデルのβ関数を使っても良いです。
世の中には困ってる人を助ける制度がたくさんあるのに何が使えるかを教えてくれないっていう理不尽仕様なんだが、そんな世界をなんとかしようとしてる人たちがいて、そのためのWebページがこの前リリースされたってことを僕はフォロワーさんに知っておいて欲しいと思ったんよ https://compass.graffer.jp/handbook/landing
昔は闇市で手に入れたものは食べないと言って餓死した数学者もいたわけで、大学教員はその程度の意地は貫き通してほしい。 今時の大学教員は知的誠実さのために餓死もできない軟弱な人間ばかりで辟易する。 ちなみに餓死(栄養失調)で亡くなった(日本人)数学者の例として岡村博がいる. 常微分方程式の本があって、以前Paulが言及していた記憶がある。 さらについでに井川満による本の書評 「付録として収録されている山口昌哉の,著者についての文章も是非読んでもらいたく思う. 敗戦の混乱のなかで,闇物資を口にすることなく,42 歳で栄養失調の故に逝去した一生であったことが分かる」とある。
「岡村博は言葉を大切にし,学生と交わす些細な会話でさえもどこまでも大切にした日常であったことが記されている. 数学に携わる者が,言葉を大切にしないならば,どこに存在意義が見つけられるのだろうか. 最近私は,数学をする者の言葉遣いがふやけているのが気になっている.」
https://twitter.com/phasetrbot/status/1595002909535522818と書いたのはまさにこの文章のような状況が最近の大学関係者によく見られるのを指している。特にオープンレターズは大学教員どころか人として最低限の誠実ささえ持ち合わせておらず人の心を持たない差別主義者ばかりで最近ずっと衝撃を受け続けている。
物理・工学以外にも数学を濫用する人間が増えるのはいいことなのかという気分はある。ポストモダン的な地獄を生まないか、大学関係者の知的誠実さがどこまで信用できるのか、ただひたすらに気になる。
サッカーとドイツ語といえば
- 日本をLand des Sushis「寿司の国」と呼ぶのはセーフ(定冠詞+寿司が単数属格)
- でも定冠詞+寿司が複数属格のLand der Sushisだと「寿司野郎どもの国」的な意味になってしまって1文字違いで完全アウト
――というものすごい地雷があるらしい https://german.stackexchange.com/questions/63303/connotation-of-land-der-sushis これはどうも単数属格を加えるだけなら純粋な食べ物の意味になるけど複数属格だとそれを食べる人々への揶揄的なあだ名を加えた感じになるかららしい 実際、過去にドイツのサッカー番組では後者の表現を使ってしまったキャスターに盛大な批判が集まったことがある (※昨日の試合の話ではありません) d-で始まるドイツ語の定冠詞は英語のtheに当たる要素で語源も共通している ドイツ語では名詞自体は一部を除いてあまり変化しなくなっていて、冠詞の性・数・格の変化が語形変化の代わりになっていることが多い Sushi「寿司」は中性名詞として扱われて、単数では属格のみ-sがつくこともある
人間には大変な, 膨大な量の計算を行って数学的な問題を解く
深層ニューラルネットワークの解剖 統計力学によるアプローチ 吉野元 https://jps.or.jp/information/2021/10/76_589.pdf
確率変数の数(ベイズなのでパラメータ数)が無限大に行くという意味での無限自由度系という意味で「統計力学」なのはこちらの方.時々誤解している人がいるけど,渡辺理論はそういう意味では有限自由度なので統計力学にはあまり似ていません. 漸近論で尤度関数全体を確率変数として扱うという意味では「汎関数的」なのですが,それはまた別の(もっと技術的な)側面だと思います. 「尤度関数を確率変数として扱う」は正しくないかも.対数尤度を扱うのに,まずパラメータの分布を正規近似するのではなく,漸近的な行く先を関数とみてガウス過程で近似をするというような意味です. (これは特異モデルを扱うために開発された方法と思いますが,正則モデルだからといって何でもかんでもまずパラメータで展開するという行き方に疑問を差しはさんだという意味で漸近論にとっては重要です) しかしながら,NNの理解に役立つような統計力学の意味で「無限自由度」の理論はまた別に開発しなければならなくて,その意味では吉野さんのような情報統計力学と高次元統計学のコラボが重要かと. 「平らな部分が重要」という意味では特異モデルのベイズ理論はよい点を突いているように思いますが,無限自由度の解析ではおそらく別の側面が重要.
びびる.Enriques曲面で1000ページ.3月の名古屋に向けて(?) Enriques Surfaces I,II http://www.math.nagoya-u.ac.jp/~kondo/papers.html
大栗博司先生の幻冬舎連載「数学の言葉で世界を見たら」 「計算されたリスクを取ること」で、ベイズの定理を 身近な例がいっぱいで、メチャおもしろく、わかりやすく、ためになる説明をしてくれてます。 http://gentosha.jp/articles/-/375
逆にプログラマには公理は interface だと伝えると群とか環の公理が何のためのものなのか分かってもらいやすい
トランプの「ババ抜き」で、勝率を "相手の3倍" にする方法を見つけましたので記事を書きました。 なんと… 「誰から配るかを変えるだけ」ですっ。 記事→ https://kuina.ch/notebook/page33
関数解析の資料探してたら良さそうなの見つけたけどこの資料作った人エグすぎる 工学のための関数解析PDF
ガウスの消去法にめっちゃ誤差が入って、あやしいと思って検算しても(検算にも誤差が入って)残差が0になってしまう、なんてこともあるので、検算したから安心とは言えない。
YouTubeのSampouOrgチャネルで米田優峻(@e869120)さんの『競技プログラミングの鉄則』をHaskellで楽しむ動画シリーズをはじめました。主目的はHaskellプログラミングを(和紙が)楽しむこと。ついでにアルゴリズム力、思考力が向上するといいな。つづくといいな。
追加しました。尺取虫法 = mapAccumL + span かな? A13: Close Pairs — 『競技プログラミングの鉄則』をHaskellで楽しむ 024 https://youtu.be/KiXQVixpamg @YouTube より
橋本陽介『中国語は不思議』読了 新書を読むのはかなり久しぶりではあったのですが、コレが語学ダメダメ人間でも ちょっと中国語分かってきたんじゃない? と自惚れさせられる感じでちょっと勉強再開しようかしらと思いました それは置いておくとして「疲労回復」「汚名挽回」のトピックスが面白い
日本人がネイティブな英語を書くのは、今までかなり難しかった(オンライン英文校正サービスもほぼ無力だった)けど、ChatGPTを使えば簡単に書けるし文脈も伝えられるのでやはり革命。実際に出力を見てみると、RT元が問題があると言っている部分もすべて修正されており、良い。
場末ホステルのロシア人(日本が好き/ピカチュウが好き)が「かわいいぬ」と言ってて何故急に日本語?(しかも"ぬ構文"?)と思ったら、日本語の「かわいい」がそのまま形容詞「カワイヌィ」(каваиный)になっているんだと。ほんまかいなって思って調べたらちゃんと存在してたし、鬼の格変化もするみたい。
ChatGPTを試してみた。 有効な使い方のひとつに「自分が知らない分野の関連ワードを挙げてもらって思考を発散させる」ことがありそうだなと。 ある程度の知識がないとGoogleで検索するワードがそもそも思いつかないが、ひとつのキーワードを端緒にChatGPTに関連語句を色々挙げてもらうことができる。
いい記事見つけた 11月に最も重要なAIの進歩の包括的なリスト Cutting-edge AI: NOVEMBER Digest
Previous: 2022-12-11 Next: 2022-12-31 back to top同朋舎出版のビジュアルシリーズ世界再発見はいいぞ。 あれで入門すれば世界地理は答え合わせできてたのしい。 あと中公の世界の名著はいいぞ。本文の訳の気合の入り方もそうだが、訳者によるガチ解説がたのしくてわかりやすい。当時はB1くらいの学力で読むものなんだろうけど今ならB4くらいじゃね…?