不等式, 代数的不等式

この記事は1分で読めます

このサイトは学部では早稲田で物理を, 修士では東大で数学を専攻し, 今も非アカデミックの立場で数学や物理と向き合っている一市民の奮闘の記録です. 運営者情報および運営理念についてはこちらをご覧ください.

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!


Twitter でこのような呟きを見つけた.

不等式、極めるためにはHölderやらKaramataやらMinkowskiやらShapiroやらYoungやら 全部ある程度知っておいた方が良さそうだしそれでも変な問題は解けない感じがあるので死

彼/彼女 (以下では「彼」で統一) は高校生 (のはず) なのだがなかなかマニアックなことを知っている. Young, Holder, Minkowski は解析学を学んだ者なら誰でも知っているが, 少なくとも他の 2 つは私は本当につい最近知った. 上記不等式群は例えば次の本に書いてある.

最近「数学で遊ぶ」をコンセプトに, 不等式 (の証明) に関する動画を作ろうと思ったので参考のために買ったのだが, まだ一度ざっと目を通しただけだ.
彼は受験に関して言っているのだと思うが, 受験にはあまり関係ないだろう. 動画を作ろうといったことにも関係するが, 証明の技術的にも大事だし何より面白いので勉強しておいて損はない. 遠い受験の記憶を掘り起こすと, 東工大だかどこかで Minkowski の等号成立条件を調べる問題はあった気がするので, 受験的にも出てくることがないわけでもないはず.
念の為に書いておくと, Holder と Minkowski は Lp (または p) に関する三角不等式を示すのに使う. Young も実解析的な方向で基本的な不等式だ. Karamata や Shapiro は代数的不等式 (あえて言えば有限集合上の p に関する不等式) では基本的で大事な不等式のようだ. 彼のツイートを見てから上記の本が気になって仕方がない.

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!

  • このエントリーをはてなブックマークに追加
  • LINEで送る
  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

このサイトについて

数学・物理の情報を中心にアカデミックな話題を発信しています。詳しいプロフィールはこちらから。通信講座を中心に数学や物理を独学しやすい環境づくりを目指して日々活動しています。
  • このエントリーをはてなブックマークに追加
  • LINEで送る

YouTube チャンネル登録

講義など動画を使った形式の方が良いコンテンツは動画にしています。ぜひチャンネル登録を!

メルマガ登録

メルマガ登録ページからご登録ください。 数学・物理の専門的な情報と大学受験向けのメルマガの 2 種類があります。

役に立つ・面白い記事があればクリックを!

記事の編集ページから「おすすめ記事」を複数選択してください。