このサイトは学部では早稲田で物理を, 修士では東大で数学を専攻し, 今も非アカデミックの立場で数学や物理と向き合っている一市民の奮闘の記録です. 運営者情報および運営理念についてはこちらをご覧ください.
中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しようや役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!
ブルブルエンジン兄貴と解析学に関するやりとりをしてきた これ とか これ.
ヒルベルト空間は, 閉単位球体が点列コンパクトなら直交基底を持つらしいのですが, これ選択公理要るのってやばいんですか??
@alg_d 誰も気にしていないのでは. 作用素環だとちょっとした汎関数つくるのに選択公理つかうようですし, 使うものと割り切っているか気にしないか, という印象
@phasetr この命題が成り立たないとしたらやばいんですか??
@alg_d 応用上, 大体可分なところしか考えない (ただ, (L^{infty}) はよく出てくるのに非可分) (作用素環だと普通可分性を仮定) ので, そもそも現行人類が制御できる世界の外側なのでは, という感覚があります
@phasetr やばいと思った
そもそも関数解析で閉単位球体をコンパクトにしたいのってなんかあるんですか
@alg_d 「有界閉集合はコンパクト」の類似が使えてこう色々とはかどるからです. 幾何でよくコンパクト多様体ばかり出てくるのと似たような感じ
@phasetr なんかはかどるイメージがあまりわかないレベルで雑魚でした
@alg_d 解析学だと何かしら収束させないと話が進まないわけですが, 有界列であれば部分列くらいは収束してくれるのでうれしいわけです. そういう感じ
@phasetr はー, なるほど!!
中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しようや役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!
この記事へのコメントはありません。