このサイトは学部では早稲田で物理を, 修士では東大で数学を専攻し, 今も非アカデミックの立場で数学や物理と向き合っている一市民の奮闘の記録です. 運営者情報および運営理念についてはこちらをご覧ください.
中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しようや役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!
Bolzano-Weierstrass の定理についてのやりとりがあったので残しておきたい.
ボルツァーノ・ワイエルシュトラの定理って難しいかな?
@bonacci_11235 名前がわからないけど有界な数列は収束部分裂をもつってやつ?
@bonacci_11235 そこまで難しくはないですよ
@dingdongbell そうです
@bonacci_11235 大丈夫だと思う (?)
ボルツァノ-ワイエルシュトラス, 実数論の要という意味でかなりクリティカルだし, 一般にはコンパクトの話だし, 少し突っ込んだだけで深淵が出てくるのだがどういう意味でそれほど難しくないと言っているのか感ある. 数学が好きな子相手の話だからこそクリティカルという感ある
@phasetr 工学部の人間相手なら「気にしている暇があったら本業やれ. 本業で本当に出くわしたどうにもならなくなった時点で気にかけろ. それでも多分気にする必要はないし, 本当に気にする必要が出てきてしまったときはまず工学が分かる数学者を巻き込め. 話はそれからだ」的なことをいう
中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しようや役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!
この記事へのコメントはありません。