無限次元トポロジーという魔界

この記事は2分で読めます

このサイトは学部では早稲田で物理を, 修士では東大で数学を専攻し, 今も非アカデミックの立場で数学や物理と向き合っている一市民の奮闘の記録です. 運営者情報および運営理念についてはこちらをご覧ください.

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!


tri_iro さんの連続ツイートが面白かったので張っておく.

  1. https://twitter.com/tri_iro/status/385075846018375680
  2. https://twitter.com/tri_iro/status/385725260164628480
  3. https://twitter.com/tri_iro/status/385725908771807232
  4. https://twitter.com/tri_iro/status/385726851957538818
  5. https://twitter.com/tri_iro/status/386472808923926528
  6. https://twitter.com/tri_iro/status/386473588863168514

van Mill の “Infinite-Dimensional Topology” http://www.amazon.co.jp/dp/0444871330/ 読んでたら強無限次元の完備な全不連結空間とか超限次元を持たないけど弱無限次元のコンパクト空間の例とか載ってたのでしっかり理解しとこう.
【疑問】アレクサンドロフの問題 (1951) の一般化:コンパクト可分距離空間が遺伝的弱無限次元ならば必ず零次元部分空間の可算和となるか? いや, どちらかといえば反例が欲しいんですが.
ってかヒルベルト・キューブを可算個の全不連結空間の和として分解するのって無理だと勝手に思ってたんですが可能なのかなー. いや, 零次元空間の可算和にするのが無理ってことは簡単に分かるんですが, 無限次元トポロジー本読んでたら, 無限次元の全不連結空間とか出て来るし自信なくなってきた.
アレクサンドロフの問題の Pol による反例は, 変な強無限次元空間のコンパクト化として作るから, 当然, 強無限次元空間を部分空間として含むわけで, 遺伝的弱無限次元にならないんですよねー
E. Pol “高次元遺伝的分解不可能連続体の比較不可能なフレシェ型を持つ族”http://www.sciencedirect.com/science/article/pii/S0166864104001695 遺伝的強無限次元カントール多様体の非可算族で, フレシェ次元型が反鎖になっているものの作り方がここに載ってた.
「ヒルベルト・キューブを埋め込めない非可算次元ポーランド空間ってどうやって作るんだよ! 」という疑問から始まり, 自力では構成を思いつかず, 「非可算次元ポーランド空間のフレシェ次元型は唯一なんじゃないか」という楽観的な予想をして色々調べていたけど, 無限次元トポロジーの闇は深かった.

無限次元トポロジー, 魔界.


中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!

  • このエントリーをはてなブックマークに追加
  • LINEで送る
  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

このサイトについて

数学・物理の情報を中心にアカデミックな話題を発信しています。詳しいプロフィールはこちらから。通信講座を中心に数学や物理を独学しやすい環境づくりを目指して日々活動しています。
  • このエントリーをはてなブックマークに追加
  • LINEで送る

YouTube チャンネル登録

講義など動画を使った形式の方が良いコンテンツは動画にしています。ぜひチャンネル登録を!

メルマガ登録

メルマガ登録ページからご登録ください。 数学・物理の専門的な情報と大学受験向けのメルマガの 2 種類があります。

役に立つ・面白い記事があればクリックを!

記事の編集ページから「おすすめ記事」を複数選択してください。