小林俊行先生のインタビューページ: インタビュー・井上学術賞受賞・小林俊行教授 無限次元の対称性の数学 ~根源から湧き出す泉の豊かさ~

この記事は1分で読めます

このサイトは学部では早稲田で物理を, 修士では東大で数学を専攻し, 今も非アカデミックの立場で数学や物理と向き合っている一市民の奮闘の記録です. 運営者情報および運営理念についてはこちらをご覧ください.

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!


インタビュー・井上学術賞受賞・小林俊行教授 無限次元の対称性の数学 ~根源から湧き出す泉の豊かさ~ という記事だ.

興味がある人はとりあえず読んでみよう.
極小表現について小林先生がいろいろ話している.

この辺からが本領発揮だ.

これ以上分解できない最小のものと言いましたけれども、
実は、重ね合せによる分解という古典的な考え方だけを用いるのではありません。
より単純なものから複雑なものを構成する、表現のインダクションという仕組みがあります。
その仕組みを逆にたどると、単に分解するだけより、もっと根源的なものに行き着きます。
実は、本当に根源的なものは非常に種類が少ないのです。
実際、対称性のほとんどは一次元のものに端を発していることがわかります。
根源的なのに無限次元のものもごく少数存在します。
この例外的な無限次元の対称性の代表格といえるのが極小表現です。

あとこれ.

教えるのが上手とか字がきれいとかというのと全然違うんだけど、
本物の数学の息吹を感じてもらう手助けなら少しできるかなあと。
一・二年生を教えたいという気持ちは、そういうところにあります。

自分の中のものが人に伝わる、あるいは人のものが自分に伝わるという、
空気中に飛び交うもの、目には見えない何かがあるでしょう。
ぼくは、こういう空気を大切にしたいのです。
ついさっきまで研究していた先生がパッと教室に行って講義する。
研究に没頭していた空気がまだ服にもついてるし、
体の中からも出ているかもしれない、それを伝えて、
また学生さんは学生さんで日々研鑽して伸びている空気を出してそれを一つの教室で共有するっていうのが、
何かすごく素敵なものだなあと思う。
それが教えることが好きな理由の一つかなあと思います。

これが凄く大事で, 私もやってみたいと思うことだ.
大したことができなかろうが何だろうが,
研究する気持ち・挑戦する気持ちを捨てずにいること,
それを示し続けること, それが大事と信じている.

ちなみに小林先生について以前 この記事 でも滅茶苦茶格好いい姿を紹介している.
ぜひ読んでほしい.
あと『数学まなびはじめ』は必読なので買っていない人はさっさと買ってほしい.



中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!

  • このエントリーをはてなブックマークに追加
  • LINEで送る
  1. この記事へのコメントはありません。

  1. この記事へのトラックバックはありません。

このサイトについて

数学・物理の情報を中心にアカデミックな話題を発信しています。詳しいプロフィールはこちらから。通信講座を中心に数学や物理を独学しやすい環境づくりを目指して日々活動しています。
  • このエントリーをはてなブックマークに追加
  • LINEで送る

YouTube チャンネル登録

講義など動画を使った形式の方が良いコンテンツは動画にしています。ぜひチャンネル登録を!

メルマガ登録

メルマガ登録ページからご登録ください。 数学・物理の専門的な情報と大学受験向けのメルマガの 2 種類があります。

役に立つ・面白い記事があればクリックを!

記事の編集ページから「おすすめ記事」を複数選択してください。