ゼルプスト殿下のツイート+記事: $\aleph_1$ は連続体濃度ではなく可算順序数全体の集合の濃度である

この記事は5分で読めます

このサイトは学部では早稲田で物理を, 修士では東大で数学を専攻し, 今も非アカデミックの立場で数学や物理と向き合っている一市民の奮闘の記録です. 運営者情報および運営理念についてはこちらをご覧ください.

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!


殿下がいろいろ書いていたので.
とりあえずはじめのところから引用開始.

そしてこれらを殿下自身がまとめたページが次のリンクにある.

個人的に覚えておきたいところを引用しつつコメント.

きょう届いた本のうち坪井俊『幾何学II ホモロジー入門』(東京大学出版会)を見たら、冒頭のp.2に連続体濃度を $\aleph_1$ と書くとあった。これは間違いだ。連続体濃度は書くとすれば $2^{\aleph_0}$ であり、これは定義上は $\aleph_1$ とまったく別物であり、両者が一致するかどうかは数学史上に名高い「連続体仮説」という独立命題である。

思うに、これは $\aleph_1$ が連続体濃度と比較して陰が薄いことに問題がある。「最小の不可算濃度」という定義が理解されていればいいほうで、それがいかなる集合の濃度であるかまでは理解されていないのだろう。可算無限基数 $\aleph_0$ が有限順序数の集合 $\mathbb{N}$ の濃度であったのと類比的に、最小の不可算基数 $\aleph_{1}$ は可算順序数全体の集合の濃度だ。そこが理解されていれば、連続体濃度すなわち実数全体の集合の濃度と簡単に等値されることもないと思うのだが。

この辺, 全く知らなかった.
そして $\aleph_1$ を連続体の濃度と習ったくちだ.
講義でもそうだった気がする.
今手元でどこに置いたか忘れて見つからないのだが,
講義の教科書でもあった松坂和夫の『集合・位相入門』ではどうだったろうか.

集合・位相入門

そしてあまりよくわからないがとりあえず大事そうなので引用してメモ.

さてしかし、21世紀の数学には、「整列順序集合」とか「超限帰納法」とかの出る幕がなさそうだ。ゲオルク・カントールは可算な閉集合の分類問題(それ自体は彼の三角級数の研究に起源をもつ)から超限再帰と整列順序の概念に到達したのだが、その可算閉集合の分類問題の成果であるカントール・ベンディクソン定理にしてみても、カントールは孤立点を捨てる操作を超限的に反復して最後に残る完全集合に注目したが、集合論が完成してしまった今日では、同じ結果が、凝集点のなす完全集合と非凝集点のなす可算集合への分割、という形で簡単に証明されてしまうのだ。ボレル集合族だって、再帰的に生成する方法をとらず、すべての区間をメンバーにもつ最小のσ加法族という特徴づけで impredicative に定義すれば、実際上問題ないのだ。逐次近似の代わりに不動点定理を使う解析学の方法論もこれに類する。そういう具合に上から抑え込むように物事を特徴づけることが可能になるのが、集合論の有難みというわけで、数学を集合論に立脚させる試みが大成功を収めたこと自体の皮肉な結果として、超限帰納法には出る幕がなくなった、というわけだ。


中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!

  • このエントリーをはてなブックマークに追加
  • LINEで送る

関連記事

  • コメント (0)

  • トラックバックは利用できません。

  1. この記事へのコメントはありません。

このサイトについて

数学・物理の情報を中心にアカデミックな話題を発信しています。詳しいプロフィールはこちらから。通信講座を中心に数学や物理を独学しやすい環境づくりを目指して日々活動しています。
  • このエントリーをはてなブックマークに追加
  • LINEで送る

YouTube チャンネル登録

講義など動画を使った形式の方が良いコンテンツは動画にしています。ぜひチャンネル登録を!

メルマガ登録

メルマガ登録ページからご登録ください。 数学・物理の専門的な情報と大学受験向けのメルマガの 2 種類があります。

役に立つ・面白い記事があればクリックを!

記事の編集ページから「おすすめ記事」を複数選択してください。