このサイトは学部では早稲田で物理を, 修士では東大で数学を専攻し, 今も非アカデミックの立場で数学や物理と向き合っている一市民の奮闘の記録です. 運営者情報および運営理念についてはこちらをご覧ください.
中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しようや役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!
見やすくするため勝手に PDF にもまとめた.
- https://phasetr.com/members/myfiles/file/kuroki_primary_ideal.pdf
以下ツイート引用.
#数楽 準素イデアルの定義がピンと来てない人をどこかで見たような気がするのでちょっとその話。Qは可換環Aの真のイデアルであるとします。「a,b∈Aかつab∈Qかつnot a∈Qならばある自然数n>0でb^n∈Qとなるものが存在する」とき、QはAの準素イデアルであると言います。続く
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 続き。たぶんこの定義そのものだけを忠実に理解しようとしてピンと来なくなっている。同じ問題はもっと易しい素イデアルや極大イデアルの定義について教えているときにもよく出会います。イデアルについている形容詞の定義を理解するためには、そのイデアルで割ってできる剰余環について〜続く
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 続き〜、考えてみるとよいです。同じことですが、零イデアルがその性質を満たしているのはどういうときかについて考えてみるとよいです。Iは可換環Aの真のイデアルとします。A/Iが体、整域、「その零因子はすべて冪零」であることのそれぞれとIが極大、素、準素であることは同値。続く
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 続き〜、考えてみるとよいです。同じことですが、零イデアルがその性質を満たしているのはどういうときかについて考えてみるとよいです。Iは可換環Aの真のイデアルとします。A/Iが体、整域、「その零因子はすべて冪零」であることのそれぞれとIが極大、素、準素であることは同値。続く
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 続き。個人的には教育現場では最初からそれを極大、素、準素イデアルの定義に採用したいくらい。環の準同型定理の具体例での使い方を知っていれば、剰余環を計算して極大、素、準素イデアルであることを判定してもらうことも気軽にできるし。
こういう易しい話も需要がありそうな感じ。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 「aの7乗しなければ0にならないが、bの6乗は0なので、aよりもbの方が『微小』である」とか。たとえば、Z/128Zにおいて(0⇔128で割り切れる)、14は7乗しなければ0にならないが、12の4乗は0になる。Z/128Zにおいて14よりも12の方が「微小」。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 続き。この話における128=2^7の7を無限に大きくする極限を考えれば、2の大きなべきで割り切れるほど「微小」となる「2進整数環」の世界が得られわけです。2を別の数に変えてもよい。個人的には無限小の直観があった方がp進数入門が楽になると思う。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 超大脱線。体や整域の定義の中に「零環でない」という条件を忘れずに含めている代数学入門書は注意深く書かれています。その条件は「素数に1を含めない」ことの一般化なので要注意なのですが、数学に強くなると細かい部分はどうにでもなるので書くのを忘れるようになる。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 あと剰余環の定義についても教科書に書いてある定義のみを忠実に理解しようとしてはまるパターンもよく見かける感じがします。(似たようなはまり方を多様体の定義でも見かけたことがある。) 剰余環Z/12Zは有理整数環Zの中で12を0とみなしてできる環であるとかを知らないと困る。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 続き。M/Nで「Mの中でNの元をすべて0とみなしてできるもの」を意味することがよくある。この「〜とみなしてできるもの」という曖昧な言い方を避けると教科書に書いてあるような定義になる。教科書的定義を出発点にするのではなく、「定義を自分で出す」という発想が大事。続く
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 易しい話の続き。数学科学部レベルの代数を習ったら、中高で習った「方程式」の定義について考えてみるとよいかも。例えば勝手に剰余環R=Z[x]/(x^2-2)Z[x]を「方程式x^2=2」と呼ぶと定義してよい。任意の環Aにおける方程式x^2=2の解全体は〜続く
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 続き〜、剰余環R=Z[x]/(x^2-2)Z[x]から環Aへの環の準同型写像φ全体と一対一に対応しています(α=φ(x)が解になる)。中学校レベルの方程式x^2=2とその解を環と環の準同型の言葉で完全に定式化できたわけです。続く
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 x^2+y^2=1のような図形の定義になっている方程式も剰余環R=Z[x,y]/(x^2+x^2-1)Z[x,y]として定式化できる。方程式x^2+y^2=1の実数解全体はRから実数体への環の準同型写像全体と一対一に対応している。これで円の方程式も環論で扱える。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 で、環論のよくある演習問題に「Kが実数体の部分体であるときK[x,y]/(x^2+y^2-1)K[x,y]は整域だがUFDではないことを示せ」があります。Kが複素数体ならUFDになることは易しい(Laurent多項式環に同型になる)。単位円の方程式への新たな出会い。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 超易しい話という文脈では1つ前のツイートの問題は難しい方に分類されます。UFDでない例としてはK[x,y]/(y^2-x^3)K[x,y]≅K[t^2,t^3] (x=t^2, y=t^3)の方がずっと易しい。これはカスプy^2=x^3の特異点解消の例でもある。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 x=t^2, y=t^3は「x=f(t), y=g(t)の軌跡を考える。f(t)もg(t)も滑らかな函数なのに軌跡は滑らかではない例を挙げよ」の例になっています。 https://t.co/KO2X9n55vl
y^2=x^3は退化した楕円曲線の例にもなっている。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 https://t.co/WPY6yaW7rS
parametric plot x=t**2, y=t**3, z=t
xyz空間内の曲線としてこれは滑らかだが、xy平面に射影すると尖がる。— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 以上の例は多くの教科書でよく見かけるものです。教科書的例はやはり重要で知らないと様々な場面で理解に困ることが多い。具体的な例も一般的な概念もどちらも大事。具体例にはどの一般論に関係あるかを必ず要求し、一般論では具体例を必ず要求する。答えに詰まる人は大して理解していない。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 でも見栄をはって完璧に理解するまで誰にも話さないのは楽しみのかなりの部分を失うと思う。まだよくわかっていないことを説明しているうちに理解がすすむ方が普通だと思う。だから理解していないことの説明を聞いてくれる友人は貴重。単に聞いてもらうだけでありがたい。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 今だとパソコンで無料の数式処理ソフトが使い放題だし、スマホからWolframAlphaにアクセスすれば気楽にグラフを描いたり、計算したりできる。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 M/Nの話で代数方程式だけではなく、線形微分方程式も定式化できる。ただし非可換環が必要。正準交換関係x∂-∂x=1で定義される常微分作用素環論D=C[x,∂]を考える(∂=d/dx)。常微分方程式(∂^2+1)u=u''+1=0をD加群で定式化するには〜続く
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 続き〜、ランク1の自由D加群Duの剰余加群
M=Du/D(∂^2+1)u
=(Duの中で(∂^2+1)u=0とみなしてできる左D加群)
を考えます。これが微分方程式u''+1=0のD加群としての定式化。Dが作用している任意の函数空間Fにおけるu''+1=0の解と〜続き— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 続き〜、MからFへのD加群準同型φは一対一に対応している(φ(u)が解になる)。たとえば、F=C^∞(R)の場合:φ(u)=e^{±ix}, cos x, sin xを満たすD加群準同型φ:M→C^∞(R)が一意に存在する。これで線形微分方程式も剰余加群で定式化できた。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 一般に微分作用素P∈Dについての微分方程式Pu=0はD加群M=Du/DPu=(Duの中でPu=0とみなしてできる左D加群)として定式化できます。NからD加群FへのD加群準同型全体の集合はHom_D(M,F)と書かれます。Fが具体的な函数空間ならこれはPu=0の解空間。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 線形微分方程式をこのように定式化することの御利益はホモロジー代数を使えることです。すなわちPu=0の解空間のHom_D(M,F)だけではなく、Ext^i_D(M,D)も使える。先の例ではMの自由分解0←M←Du←DPu←0でExtを計算できます。続く
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 続き。実際に計算すると、Ext^0_D(M,F)≅Hom_D(M,F)≅Ker(P:F→F)=(Pu=0のFでの解空間)
Ext^1_D(M,F)≅Coker(P:F→F)=F/PF=(Pu=fの解がF内に存在しないf∈Fがどれくらいあるか)
となります。— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 続き。たとえばP=x=(函数xをかける作用素)でF=C[x]のとき、xu=0の解空間は自明にHom_D(M,F)=0となり、Ext^1_D(M,F)≅C[x]/xC[x]≅Cとなります。この例は基本的。
デルタδ函数はxδ(x)=0をみたしているのでxu=0の解。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 https://t.co/bqqEN04aDB
訂正NじゃなくてMです。自明な誤り。まあとにかく、中学校から大学にかけて習う方程式たちは、環や加群として定式化でき、解と具体的な環や加群への準同型は一対一に対応しているということです。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 よくわからない何かは「方程式」とみなせ、そこから具体的な何かへの「射」は「方程式の解」とみなせるという話は単なる再定式化ではなく数学的に意味のある形でうまく行っているということです。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 https://t.co/SjSbjpJbu2
訂正:∂=d/dxに関して、x∂-∂x=1ではなく、∂x-x∂=1が正しい。これも自明な誤り。— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月21日
#数楽 https://t.co/VuyF5XSuGY
準素(prinary)イデアルの定義がピンと来ない人をどこかで見かけたような気がするという話から、方程式の概念を環や加群で定式化する話に脱線したのでした。その話の続き。必要な脱線であったことがわかるようにしたい。— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
#数楽 復習1:可換環Aの真のイデアルIが準素(primary)であるとは剰余環A/Iのすべての零因子が冪零になることであった。だから準素イデアルの概念を理解するためには零でない剰余環でその零因子がすべて冪零になるようなものについて理解すれば良さそうだ。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
#数楽 復習2:有理整数環をZと書く。中学校で習う方程式x^2=2は剰余環R=Z[x]/(x^2-2)Z[x]=(Z[x]の中でx^2=2とみなしてできる環)として定式化できる。可換環Aにおけるx^2=2の解はRからAへの環準同型φと一対一に対応している(φ(x)が解になる)。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
#数楽 ここから新しい話。素イデアルとはそれで割ってできる剰余環が整域になるようなイデアルのことであった。I=(x^2-2)Z[x]はZ[x]の素イデアルである。証明は環の準同型定理を使って、Z[x]/IがZ[√2]={f(√2)|f∈Z[x]}に同型であることを示せばよい。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
#数楽 中学校では重解を持つ方程式x^2-2x+1=0についても習う。その方程式とx-1=0の実数解の集合は一致している。実数解の集合で重解を持つ方程式とそうでない方程式を区別することは不可能である。しかし、方程式を剰余環として定式化すればそれらを区別できる。続く
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
#数楽 続き。x^2-2x+1=0は剰余環R_2=Z[x]/I_2、I_2=(x^2-2x+1)Z[x]として、x-1=0は剰余環R_1=Z[x]/I_1、I_1=(x-1)Z[x]として定式化できる。環の準同型定理によって、R_1はZ[1]=Zと同型になり、続く
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
#数楽 続き〜、R_2はランク2の自由Z加群Z+Zεにε^2=0というルールで可換環の構造を入れたもの(Z[ε] with ε^2=0)に同型なことがわかる(x-1にεを対応させる)。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
#数楽 環の準同型定理を使えない人は次のように考えてもよい。
R_1の定義はZ[x]/(x-1)Z[x]で、それはZ[x]の中でx-1=0すなわちx=1とみなしてできる環のことなので、xが1で置き換えられて、R_1≅Zとなる。
続く
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
#数楽 続き。
R_2の定義はZ[x]/(x^2-2x+1)Z[x]=Z[x]/(x-1)^2Z[x]で、それはZ[x]の中で(x-1)^2=0とみなしてできる環なので、x-1が2乗すると0になる無限小量εに置き換えられて、R_2≅Z[ε] with ε^2=0となる。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
#数楽 重根を持つ方程式(x-1)^2=0を環論的に定式化するときには、xを1+ε (ここでεは2乗すると0になる無限小量)で置き換えるという操作をするわけです。単根と重根の違いは冪零元(無限小量の一種)の有無で区別されます。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
#数楽 で、以上に出て来た重根を表現するイデアルI_2=(x-1)^2Z[x]がZ[x]の準素イデアルになっていることもわかります。準素イデアルの話は中学校のときに習った重根の話の一般化になっているわけ。
数学科の学部レベルでの代数は義務教育レベルの話をやり直している感じ。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
#数楽 冪零元εは「それ自体は0ではないがそのある冪が0になるほど微小な無限小量の一種」とみなせます。このようなスタイルによって純代数的に無限小量を扱えるわけです。それによって純代数的に解析学(逐次近似が重要)の真似事ができる。冪零元を排除しないことは結構大事。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
#数楽 残念なことに、大学の数学科の先生の中には、「高校以下の数学と大学数学科での数学は違う」と強調し過ぎて、学生が数学を「普通に」理解する道から離れてしまう原因を作っている人達がいるように思えます。実際には高校以下の数学と数学科での数学は内容的にダイレクトに繋がっています。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
#数楽 内容的に高度になっているという違いは確かにあるのですが、同じ数学。本質的に変わったと感じる人は高校以下の数学を正しく理解していなかっただけなのだと思う。そこには運で決まっている部分が膨大にある。運の良さを奢ることなく、運の悪さに負けることなく楽しみたいものだと思います。
— 黒木玄 Gen Kuroki (@genkuroki) 2016年9月22日
これ相当参考になるのでは.
イデアルについている形容詞の定義を理解するためには、そのイデアルで割ってできる剰余環について考えてみるとよいです。
そしてこれ.
Iは可換環Aの真のイデアルとします。A/Iが体、整域、「その零因子はすべて冪零」であることのそれぞれとIが極大、素、準素であることは同値。
途中, 代数解析的な話も出てくる.
ふつうは代数幾何の範疇なのだろうか?
私は代数解析の文脈で先に見たのでそう思ってしまうけれども.
中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しようや役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!
この記事へのコメントはありません。