現代数学探険隊でのセルフコンテインドネス: 「現代数学が難しいnつの理由 – はじまりはKan拡張」へのコメント

この記事は4分で読めます

このサイトは学部では早稲田で物理を, 修士では東大で数学を専攻し, 今も非アカデミックの立場で数学や物理と向き合っている一市民の奮闘の記録です. 運営者情報および運営理念についてはこちらをご覧ください.

中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!


infinity_topoi さんによる次のような記事が出た.

項目だけ挙げておこう. 詳しくは上記リンクから記事を見に行ってほしい.

  • その1:まず、そもそも数学の厳密さは難しい
  • その2:高校数学とはスタイルが大きく異なる
  • その3:実はSelf-Containedな教科書は少ない
  • その4:勉強することが膨大な一方で全体の見通しが悪い
  • その5:大学コミュニティと外部の間の情報格差が大きい
  • その6:現代数学を学ぶことがなかなか仕事にならない

このうちその 3 は特に現代数学探険隊で, その 4 はここにある無料講座をはじめとした各種コンテンツとしてまさに対応するコンテンツを作っている. その 5 に関しては例えばここで参考文献集を公開している.

私自身, 幾何の勉強で日々死ぬ程苦労している. 特にその 3, 現代数学探険隊に関する思いのようなものを改めていろいろ書いたのでまとめておく.

ツイートまとめ

これ、幾何の話があったのでこれまで幾何で苦労した話を書くと、ホイットニーの埋め込みやらサードの定理やらホッジやら、幾何は基本的な定理が示されないケースがやたら多い印象があり、幾何の人はどう勉強しているのか不思議でならない。名著と名高いミルナーのモース理論もちょっと面倒そうな命題は全部当時の文献にぶん投げられていてあの本は読めたものではないと思うのだが、読める人今いるの?微分幾何に関してまたセルフコンテインドなやつを作ろうと思っていて、今作っている力学・微分幾何の計算コンテンツもその一環であった。

全く知らないので適当な話だが、何となく代数幾何は準備が膨大な分、証明抜きで紹介されるだけの定理なさそうな気がするが、微分多様体・微分幾何はとにかく証明抜きで認める感じの定理が多く、何でああなったのか全くわからない。調和積分論の証明が書かれた、多様体の基本から書いてある幾何の本、ドラームの本とワーナーの本しか知らない。調和積分自体がテーマの本はあるが、ベクトル束の議論を突っ込んでいたり、ちょっとレベルが上がる印象がある。もちろん解析学上の議論のレベル・ハードルがかなり上がるから、それ相応のバックグラウンドが仮定されるのはわからないではない。多様体上のソボレフ空間またはカレントの議論がいるわけだが、多様体上のソボレフ自体がまた難しい。解析学専攻でも学部三から四年の内容をさらに面倒にしていて、非コンパクトの場合はソボレフ空間が一の分割に依存するとかいう話もある。

何故(物理の色彩が強く近似の議論などもある)力学?と思う人がいるかもしれないので書いておくと、解析力学はシンプレクティック幾何の母体とよく言われるし、それ以前に力学で出てくる常微分方程式の解法それ自体が多様体論の母体だったりもする(少なくともそういわれている)からだ。数学サイドで何らかの形で物理に触れたいという場合、解析力学は1つの軸になるという気分があるが、その前段のふつうの力学がどれだけカバーされているのかよく知らない。そういった部分も意識して、近似も何をどうやっているのか多少なりとも埋める目的で力学をやっている。もちろん他のもっと面倒な物理の前哨戦でもある。運動学に関して言えばそのまま古典的な、3次元空間内の曲線論で、フルネー-セレなども途上で出てくる。具体的な常微分方程式の処理もあるし、幾何学的変分問題と測地線なども当然物理、力学と関係がある。

ちょっとしたやりとり

  • 全く知らないので適当な話だが、何となく代数幾何は準備が膨大な分、証明抜きで紹介されるだけの定理なさそうな気がするが、微分多様体・微分幾何はとにかく証明抜きで認める感じの定理が多く、何でああなったのか全くわからない。調和積分論の証明が書かれた、多様体の基本から書いてある幾何の本、

いや、多いと思いますよ。記事にも書きましたが、Mitchellの埋め込み定理とかも志保先生の本が出るまではロストテクノロジー扱いだったと思います。あとは「これはEGA/SGAに書いてる」みたいなのも多いです。やっぱり一時代前の「基礎数学」の整理は完全に欠如してるんだと思うんですよね。

幾何の人、ブラックボックスをどう処理しているのか不思議でなりません。

実際のところ、ブラックボックスを丁寧にフォローしている人も少ない気がします。僕もその辺のブラックボックスを綺麗にしたいという思いはありますね。現代的に整備すれば、意外とそんなに難しくないこともあると思います。

ちなみに私なりに数学の勉強がつらい理由、https://phasetr.com/mtexpdf1/https://phasetr.com/mtex1/https://phasetr.com/mrlp1/https://phasetr.com/mthlp1/などに書いていて、それぞれその問題を解決することを意図してコンテンツを作っています。

微妙に関連する話題

『初学者のための偏微分 ∂を学ぶ』井ノ口順一(現代数学社)熱力学で活用される全微分や,波動方程式の解を与えるダランベールの公式,線型偏微分方程式系の積分可能条件,陰函数定理と逆函数定理,陰函数定理を用いた平面曲線の概形の描き方等,説明を充分に受けない可能性のある内容を丁寧に解説 pic.twitter.com/1k1Ar2XDjr— 書泉グランデMATH【短縮営業11時~20時】 (@rikoushonotana) August 22, 2020

井ノ口さんの本, 『リッカチのひ・み・つ』と『曲面と可積分系』を持っていて, 2 冊とも非常に教育的でしかも面白かった. 後者は献本して頂いてここに書評も書いた. この記事をご覧になった方はぜひ買って読んでみてほしい. 2 冊とも上の「その4:勉強することが膨大な一方で全体の見通しが悪い」の気分で書かれた本で, 全体の見通しという点に関して書評の形でさらにいろいろコメントした. 私もこんなコンテンツを作ってみたいものだ. 専門家・研究者としての知見を活かした非常によい教科書だった. 今回の『初学者のための偏微分』もきっといい本だと思う. 買う.

やりとり追加

この件なのですが、P氏の知見では結局調和積分論を学ぶのに最も良い本は何なのでしょう。結局学生時代は北原などをパラパラ見て深追いしなかったのですが、de Rhamは(入手困難ですが!)読み応えのある非常に良い本だろうなという印象を受けました。

そもそも多様体上の解析にまで踏み込めるほど幾何を理解できていないのでわかりません。調和積分論と微分幾何は憧れがあるので今まさにそのための基礎固めを兼ねてコンテンツを作っている状態です。PDE自体も専門ではないので、そこも適宜補う必要がある状況です。解析系を基準にするなら、ドラームの本のカレント方向よりも素直にソボレフ空間の定式化を使いたいのですが、幾何の人々に定評があるWarnerはソボレフの一般論ではなくフーリエ級数を経由してソボレフの議論をやっています。

あと気になるのは普通の幾何の本だとコンパクト多様体に限定してシャープな結果を出す形ですが、解析からするとごく単純に非コンパクトのときにどうするかも気になります。非コンパクトな場合は少なくとも2000年代レベルで論文がいくつかあります。熱核方向、そしてそれを前提にした確率論応用など。解析的には(非コンパクト)多様体上のソボレフ空間論にいろいろ難しいことがあり、それ自体が興味関心の対象です。純粋な幾何の人ならとりあえずコンパクトだけでも十二分に楽しめるのでしょうが、解析方面からするともう少し突っ込みたかったりします。

その塩梅まで考えて解析サイドから見たときのいい本・いいコンテンツというのが私が求める対象です。当面、ユークリッド空間上のソボレフ空間論は前提にしていいので、Warnerのようなフーリエ級数論を経由しない解析的にダイレクトなアプローチ、多様体の初歩からきちんとカバーしたコンテンツがほしい

今気になっているのは Nicolaescu の本(の著者無料公開版)です。多様体の基礎からコンパクト多様体上のホッジ、ディラック作用素の議論まで入っているので、項目のラインナップとしては私が理想としている内容という印象です。あとは私の幾何耐性を強化して読みこなしたいという状況。


中高の数学の復習から専門的な数学・物理までいろいろな情報を発信しています.
中高数学に関しては自然を再現しよう役に立つ中高数学 中高数学お散歩コース
大学数学に関しては現代数学観光ツアーなどの無料の通信講座があります.
その他にも無料の通信講座はこちらのページにまとまっています.
ご興味のある方はぜひお気軽にご登録ください!

  • このエントリーをはてなブックマークに追加
  • LINEで送る

関連記事

  • コメント (0)

  • トラックバックは利用できません。

  1. この記事へのコメントはありません。

このサイトについて

数学・物理の情報を中心にアカデミックな話題を発信しています。詳しいプロフィールはこちらから。通信講座を中心に数学や物理を独学しやすい環境づくりを目指して日々活動しています。
  • このエントリーをはてなブックマークに追加
  • LINEで送る

YouTube チャンネル登録

講義など動画を使った形式の方が良いコンテンツは動画にしています。ぜひチャンネル登録を!

メルマガ登録

メルマガ登録ページからご登録ください。 数学・物理の専門的な情報と大学受験向けのメルマガの 2 種類があります。

役に立つ・面白い記事があればクリックを!

記事の編集ページから「おすすめ記事」を複数選択してください。